Extending combinatorial piecewise linear structures on stratified spaces. II
HTML articles powered by AMS MathViewer
- by Douglas R. Anderson and Wu Chung Hsiang
- Trans. Amer. Math. Soc. 260 (1980), 223-253
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570787-8
- PDF | Request permission
Abstract:
Let X be a stratified space and suppose that both the complement of the n-skeleton and the n-stratum have been endowed with combinatorial piecewise linear (PL) structures. In this paper we investigate the problem of “fitting together” these separately given PL structures to obtain a single combinatorial PL structure on the complement of the $(n - 1)$-skeleton. The first main result of this paper reduces the geometrically given “fitting together” problem to a standard kind of obstruction theory problem. This is accomplished by introducing a tangent bundle for the n-stratum and using immersion theory to show that the “fitting together” problem is equivalent to reducing the structure group of the tangent bundle of the n-stratum to an appropriate group of PL homeomorphisms. The second main theorem describes a method for computing the homotopy groups arising in the obstruction theory problem via spectral sequence methods. In some cases, the spectral sequences involved are fairly small and the first few differentials are described. This paper is an outgrowth of earlier work by the authors on this problem.References
- Ethan Akin, Manifold phenomena in the theory of polyhedra, Trans. Amer. Math. Soc. 143 (1969), 413–473. MR 253329, DOI 10.1090/S0002-9947-1969-0253329-1
- Douglas R. Anderson and Wu Chung Hsiang, Extending combinatorial $\textrm {PL}$ structures on stratified spaces, Invent. Math. 32 (1976), no. 2, 179–204. MR 413114, DOI 10.1007/BF01389961
- Douglas R. Anderson and W. C. Hsiang, The functors $K_{-i}$ and pseudo-isotopies of polyhedra, Ann. of Math. (2) 105 (1977), no. 2, 201–223. MR 440573, DOI 10.2307/1970997
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 D. Carter, Negative K-theory for group rings of finite groups, Thesis, Columbia University, 1978.
- Marshall M. Cohen, A general theory of relative regular neighborhoods, Trans. Amer. Math. Soc. 136 (1969), 189–229. MR 248802, DOI 10.1090/S0002-9947-1969-0248802-6
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- F. T. Farrell and W. C. Hsiang, Manifolds with $\pi _{i}=G\times \alpha T$, Amer. J. Math. 95 (1973), 813–848. MR 385867, DOI 10.2307/2373698
- André Haefliger and Valentin Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 75–91 (French). MR 172296, DOI 10.1007/BF02684311
- A. E. Hatcher, Higher simple homotopy theory, Ann. of Math. (2) 102 (1975), no. 1, 101–137. MR 383424, DOI 10.2307/1970977
- A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and applications, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21. MR 520490
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742–749. MR 242166, DOI 10.1090/S0002-9904-1969-12271-8
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- J. M. Kister, Microbundles are fibre bundles, Ann. of Math. (2) 80 (1964), 190–199. MR 180986, DOI 10.2307/1970498
- C. Lacher, Locally flat strings and half-strings, Proc. Amer. Math. Soc. 18 (1967), 299–304. MR 212805, DOI 10.1090/S0002-9939-1967-0212805-1
- R. Lashof, The immersion approach to triangulation and smoothing, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 131–164. MR 0317332
- R. Lashof and M. Rothenberg, Triangulation of manifolds. I, II, Bull. Amer. Math. Soc. 75 (1969), 750–754; 75 (1969), 755–757. MR 0247631, DOI 10.1090/S0002-9904-1969-12272-X
- R. Lashof and M. Rothenberg, $G$-smoothing theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 211–266. MR 520506
- John Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2) 74 (1961), 575–590. MR 133127, DOI 10.2307/1970299
- J. Milnor, Topological manifolds and smooth manifolds, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 132–138. MR 0161345
- Julius L. Shaneson, Wall’s surgery obstruction groups for $G\times Z$, Ann. of Math. (2) 90 (1969), 296–334. MR 246310, DOI 10.2307/1970726 L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension $\geqslant \,5$, Thesis, Princeton Univ., Princeton, N. J., 1965.
- L. C. Siebenmann, Pseudo-annuli and invertible cobordisms, Arch. Math. (Basel) 19 (1968), 528–535. MR 239611, DOI 10.1007/BF01898777
- L. C. Siebenmann, Topological manifolds, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 133–163. MR 0423356
- L. C. Siebenmann, Deformation of homeomorphisms on stratified sets. I, II, Comment. Math. Helv. 47 (1972), 123–136; ibid. 47 (1972), 137–163. MR 319207, DOI 10.1007/BF02566793
- John R. Stallings, On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 245–254. MR 0180983
- C. T. C. Wall, Unknotting tori in codimension one and spheres in codimension two, Proc. Cambridge Philos. Soc. 61 (1965), 659–664. MR 184249, DOI 10.1017/s0305004100039001 E. C. Zeeman, Seminar on combinatorial topology, Mimeograph Notes, I.H.E.S., Paris, 1963.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 260 (1980), 223-253
- MSC: Primary 57Q25
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570787-8
- MathSciNet review: 570787