Disconjugacy and integral inequalities
HTML articles powered by AMS MathViewer
- by Achim Clausing
- Trans. Amer. Math. Soc. 260 (1980), 293-307
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570791-X
- PDF | Request permission
Abstract:
The basic data in this paper are a disconjugate differential operator and an associated two-point boundary value problem. These define in a natural way a cone of functions satisfying a differential inequality with respect to the operator. By using a result of P. W. Bates and G. B. Gustafson on the monotonicity properties of Green’s kernels it is shown that such a cone has a compact convex base which is a Bauer simplex. This result is used to derive a variety of integral inequalities which include known inequalities of Frank and Pick, Levin and Steckin, Karlin and Ziegler, as well as several new ones.References
- P. W. Bates and G. B. Gustafson, Green’s function inequalities for two-point boundary value problems, Pacific J. Math. 59 (1975), no. 2, 327–343. MR 437841
- W. Blaschke and G. Pick, Distanzschätzungen im Funktionenraum II, Math. Ann. 77 (1916), no. 2, 277–300 (German). MR 1511857, DOI 10.1007/BF01456904 A. Clausing, Pólya’s condition and polynomial expansions about two points (in preparation).
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
- Ph. Frank and G. Pick, Distanzschätzungen im Funktionenraum. I, Math. Ann. 76 (1915), no. 2-3, 354–375 (German). MR 1511829, DOI 10.1007/BF01458149
- Philip Hartman, Monotony properties and inequalities for Green’s functions for multipoint boundary value problems, SIAM J. Math. Anal. 9 (1978), no. 5, 806–814. MR 506761, DOI 10.1137/0509062
- Samuel Karlin and Zvi Ziegler, Some inequalities for generalized concave functions, J. Approximation Theory 13 (1975), 276–293. MR 376981, DOI 10.1016/0021-9045(75)90038-6
- S. B. Stečkin and V. I. Levin, Inequalities, Amer. Math. Soc. Transl. (2) 14 (1960), 1–29. MR 0112925
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no. 4, 312–324. MR 1501228, DOI 10.1090/S0002-9947-1922-1501228-5
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 260 (1980), 293-307
- MSC: Primary 26D15; Secondary 34B27
- DOI: https://doi.org/10.1090/S0002-9947-1980-0570791-X
- MathSciNet review: 570791