## A separation theorem for $\Sigma ^{1}_{1}$ sets

HTML articles powered by AMS MathViewer

- by Alain Louveau PDF
- Trans. Amer. Math. Soc.
**260**(1980), 363-378 Request permission

## Abstract:

In this paper, we show that the notion of Borel class is, roughly speaking, an effective notion. We prove that if a set*A*is both $\prod _\xi ^0$ and $\Delta _1^1$, it possesses a $\Pi _\xi ^0$-code which is also $\Delta _1^1$. As a by-product of the induction used to prove this result, we also obtain a separation result for $\Sigma _1^1$ sets: If two $\Sigma _1^1$ sets can be separated by a $\Pi _\xi ^0$ set, they can also be separated by a set which is both $\Delta _1^1$ and $\Pi _\xi ^0$. Applications of these results include a study of the effective theory of Borel classes, containing separation and reduction principles, and an effective analog of the Lebesgue-Hausdorff theorem on analytically representable functions. We also give applications to the study of Borel sets and functions with sections of fixed Borel class in product spaces, including a result on the conservation of the Borel class under integration.

## References

- J. Bourgain,
*Decompositions in the product of a measure space and a Polish space*, Fund. Math.**105**(1979/80), no. 1, 61–71. MR**558129**, DOI 10.4064/fm-105-1-61-71 - J. Bourgain,
*$F_{\sigma \delta }$-sections of Borel sets*, Fund. Math.**107**(1980), no. 2, 129–133. MR**584665**, DOI 10.4064/fm-107-2-129-133
—, - Douglas Cenzer,
*Monotone inductive definitions over the continuum*, J. Symbolic Logic**41**(1976), no. 1, 188–198. MR**427054**, DOI 10.2307/2272958 - C. Dellacherie,
*Ensembles analytiques. Théorèmes de séparation et applications*, Séminaire de Probabilités, IX (Seconde Partie, Univ. Strasbourg, Strasbourg, années universitaires 1973/1974 et 1974/1975), Lecture Notes in Math., Vol. 465, Springer, Berlin, 1975, pp. 336–372. MR**0428306**
L. Harrington, - K. Kuratowski,
*Topology. Vol. I*, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR**0217751** - A. Louveau,
*Recursivity and compactness*, Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977) Lecture Notes in Math., vol. 669, Springer, Berlin, 1978, pp. 303–337. MR**520192**
—, - Alain Louveau,
*La hiérarchie borélienne des ensembles $D^{1}_{1}$*, C. R. Acad. Sci. Paris Sér. A-B**285**(1977), no. 9, A601–A604 (French, with English summary). MR**446982** - Alain Louveau,
*Sur les fonctions boréliennes de plusieurs variables*, C. R. Acad. Sci. Paris Sér. A-B**285**(1977), no. 16, A1037–A1039 (French, with English summary). MR**583547** - Yiannis N. Moschovakis,
*Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**561709** - Jean Saint-Raymond,
*Boréliens à coupes $K_{\sigma }$*, Bull. Soc. Math. France**104**(1976), no. 4, 389–400. MR**433418**, DOI 10.24033/bsmf.1835
S. Grigorief, K. Mc Aloon and J. Stern,

*Borel sets with*${F_{\sigma \delta }}$-

*sections*(unpublished). J. Burgess,

*Effective Hausdorff resolution*(unpublished).

*A powerless proof of a theorem of Silver*(circulated manuscript). A. S. Kechris,

*Course on descriptive set theory*(circulated manuscript).

*Boréliens à coupes*${K_{\sigma \delta }}$, C. R. Acad. Sci. Paris

**285**(1977), 309-312.

*Séminaire de théorie des ensembles*, 1976-1977, Publ. de Paris VII.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**260**(1980), 363-378 - MSC: Primary 04A15; Secondary 03E15, 26A21, 28A05, 54H05
- DOI: https://doi.org/10.1090/S0002-9947-1980-0574785-X
- MathSciNet review: 574785