$q$-extension of the $p$-adic gamma function
HTML articles powered by AMS MathViewer
- by Neal Koblitz PDF
- Trans. Amer. Math. Soc. 260 (1980), 449-457 Request permission
Abstract:
p-adic functions depending on a parameter q, $0 < |q - 1{|_p} < 1$, are defined which extend Y. Moritaโs p-adic gamma function and the derivative of J. Diamondโs p-adic log-gamma function in the same way as the classical q-gamma function ${\Gamma _q}(x)$ extends $\Gamma (x)$. Properties of these functions which are analogous to the basic identities satisfied by ${\Gamma _q}(x)$ are developed.References
- Richard Askey, The $q$-gamma and $q$-beta functions, Applicable Anal. 8 (1978/79), no.ย 2, 125โ141. MR 523950, DOI 10.1080/00036817808839221 โ, Ramanujanโs extensions of the gamma and beta functions, Amer. Math. Monthly (to appear).
- L. Carlitz, $q$-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987โ1000. MR 27288, DOI 10.1215/S0012-7094-48-01588-9
- Jack Diamond, The $p$-adic log gamma function and $p$-adic Euler constants, Trans. Amer. Math. Soc. 233 (1977), 321โ337. MR 498503, DOI 10.1090/S0002-9947-1977-0498503-9
- Jack Diamond, On the values of $p$-adic $L$-functions at positive integers, Acta Arith. 35 (1979), no.ย 3, 223โ237. MR 550294, DOI 10.4064/aa-35-3-223-237
- Bruce Ferrero and Ralph Greenberg, On the behavior of $p$-adic $L$-functions at $s=0$, Invent. Math. 50 (1978/79), no.ย 1, 91โ102. MR 516606, DOI 10.1007/BF01406470
- Kenkichi Iwasawa, Lectures on $p$-adic $L$-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0360526, DOI 10.1515/9781400881703 F. H. Jackson, On q-definite integrals, Quart. J. Pure and Appl. Math. 41 (1910), 193-203.
- Neal Koblitz, A new proof of certain formulas for $p$-adic $L$-functions, Duke Math. J. 46 (1979), no.ย 2, 455โ468. MR 534062
- Tomio Kubota and Heinrich-Wolfgang Leopoldt, Eine $p$-adische Theorie der Zetawerte. I. Einfรผhrung der $p$-adischen Dirichletschen $L$-Funktionen, J. Reine Angew. Math. 214(215) (1964), 328โ339 (German). MR 163900 D. Moak, The q-gamma function for $q\, > \,1$, Aequationes Math. (to appear). โ, University of Wisconsin Dissertation (to appear).
- Yasuo Morita, A $p$-adic analogue of the $\Gamma$-function, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no.ย 2, 255โ266. MR 424762
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 260 (1980), 449-457
- MSC: Primary 12B40; Secondary 33A15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0574791-5
- MathSciNet review: 574791