## Univalence criteria in multiply-connected domains

HTML articles powered by AMS MathViewer

- by Brad G. Osgood PDF
- Trans. Amer. Math. Soc.
**260**(1980), 459-473 Request permission

## Abstract:

Theorems due to Nehari and Ahlfors give sufficient conditions for the univalence of an analytic function in relation to the growth of its Schwarzian derivative. Nehari’s theorem is for the unit disc and was generalized by Ahlfors to any simply-connected domain bounded by a quasiconformal circle. In both cases the growth is measured in terms of the hyperbolic metric of the domain. In this paper we prove a corresponding theorem for finitely-connected domains bounded by points and quasiconformal circles. Metrics other than the hyperbolic metric are also considered and similar results are obtained.## References

- Lars V. Ahlfors,
*Quasiconformal reflections*, Acta Math.**109**(1963), 291–301. MR**154978**, DOI 10.1007/BF02391816 - L. Ahlfors and G. Weill,
*A uniqueness theorem for Beltrami equations*, Proc. Amer. Math. Soc.**13**(1962), 975–978. MR**148896**, DOI 10.1090/S0002-9939-1962-0148896-1 - A. F. Beardon and F. W. Gehring,
*Schwarzian derivatives, the Poincaré metric and the kernel function*, Comment. Math. Helv.**55**(1980), no. 1, 50–64. MR**569245**, DOI 10.1007/BF02566674 - A. F. Beardon and Ch. Pommerenke,
*The Poincaré metric of plane domains*, J. London Math. Soc. (2)**18**(1978), no. 3, 475–483. MR**518232**, DOI 10.1112/jlms/s2-18.3.475 - P. R. Garabedian and M. Schiffer,
*Identities in the theory of conformal mapping*, Trans. Amer. Math. Soc.**65**(1949), 187–238. MR**28944**, DOI 10.1090/S0002-9947-1949-0028944-8 - F. W. Gehring,
*Univalent functions and the Schwarzian derivative*, Comment. Math. Helv.**52**(1977), no. 4, 561–572. MR**457701**, DOI 10.1007/BF02567390 - F. W. Gehring and J. Väisälä,
*The coefficients of quasiconformality of domains in space*, Acta Math.**114**(1965), 1–70. MR**180674**, DOI 10.1007/BF02391817 - Einar Hille,
*Remarks on a paper be Zeev Nehari*, Bull. Amer. Math. Soc.**55**(1949), 552–553. MR**30000**, DOI 10.1090/S0002-9904-1949-09243-1
W. Kraus, - Olli Lehto,
*Domain constants associated with Schwarzian derivative*, Comment. Math. Helv.**52**(1977), no. 4, 603–610. MR**457703**, DOI 10.1007/BF02567393
—, - O. Lehto and K. I. Virtanen,
*Quasiconformal mappings in the plane*, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR**0344463** - Zeev Nehari,
*The Schwarzian derivative and schlicht functions*, Bull. Amer. Math. Soc.**55**(1949), 545–551. MR**29999**, DOI 10.1090/S0002-9904-1949-09241-8 - George Springer,
*Fredholm eigenvalues and quasiconformal mapping*, Bull. Amer. Math. Soc.**69**(1963), 810–811. MR**161975**, DOI 10.1090/S0002-9904-1963-11043-5 - Kurt Strebel,
*On the maximal dilation of quasiconformal mappings*, Proc. Amer. Math. Soc.**6**(1955), 903–909. MR**73702**, DOI 10.1090/S0002-9939-1955-0073702-X

*Über den Zusammenhang einiger Charakteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung*, Mitt. Math. Sem. Giessen

**21**(1932).

*Quasiconformal mappings in the plane*, Lecture Notes 14, Univ. of Maryland, 1975.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**260**(1980), 459-473 - MSC: Primary 30C55; Secondary 30C60
- DOI: https://doi.org/10.1090/S0002-9947-1980-0574792-7
- MathSciNet review: 574792