## An asymptotic theory for a class of nonlinear Robin problems. II

HTML articles powered by AMS MathViewer

- by F. A. Howes PDF
- Trans. Amer. Math. Soc.
**260**(1980), 527-552 Request permission

## Abstract:

Various asymptotic phenomena exhibited by solutions of singularly perturbed Robin boundary value problems are studied in the case when the right-hand side grows faster than the square of the derivative.## References

- Earl A. Coddington and Norman Levinson,
*A boundary value problem for a nonlinear differential equation with a small parameter*, Proc. Amer. Math. Soc.**3**(1952), 73–81. MR**46517**, DOI 10.1090/S0002-9939-1952-0046517-3 - F. W. Dorr, S. V. Parter, and L. F. Shampine,
*Applications of the maximum principle to singular perturbation problems*, SIAM Rev.**15**(1973), 43–88. MR**320456**, DOI 10.1137/1015002 - L. È. Èl′sgol′c,
*Qualitative methods in mathematical analysis*, Translations of Mathematical Monographs, Vol. 12, American Mathematical Society, Providence, R.I., 1964. MR**0170048** - A. Erdélyi,
*Singular perturbations of boundary value problems involving ordinary differential equations*, J. Soc. Indust. Appl. Math.**11**(1963), 105–116. MR**152720** - S. Haber and N. Levinson,
*A boundary value problem for a singularly perturbed differential equation*, Proc. Amer. Math. Soc.**6**(1955), 866–872. MR**74634**, DOI 10.1090/S0002-9939-1955-0074634-3 - Wolfgang Hahn,
*Stability of motion*, Die Grundlehren der mathematischen Wissenschaften, Band 138, Springer-Verlag New York, Inc., New York, 1967. Translated from the German manuscript by Arne P. Baartz. MR**0223668** - J. W. Heidel,
*A second-order nonlinear boundary value problem*, J. Math. Anal. Appl.**48**(1974), 493–503. MR**377163**, DOI 10.1016/0022-247X(74)90172-3 - F. A. Howes,
*An asymptotic theory for a class of nonlinear Robin problems*, J. Differential Equations**30**(1978), no. 2, 192–234. MR**513270**, DOI 10.1016/0022-0396(78)90014-1 - F. A. Howes,
*Singularly perturbed superquadratic boundary value problems*, Nonlinear Anal.**3**(1979), no. 2, 175–192. MR**525970**, DOI 10.1016/0362-546X(79)90075-0 - E. L. Ince,
*Ordinary Differential Equations*, Dover Publications, New York, 1944. MR**0010757** - Lloyd K. Jackson,
*Subfunctions and second-order ordinary differential inequalities*, Advances in Math.**2**(1968), 307–363. MR**229896**, DOI 10.1016/0001-8708(68)90022-4 - W. E. Johnson and L. M. Perko,
*Interior and exterior boundary value problems from the theory of the capillary tube*, Arch. Rational Mech. Anal.**29**(1968), 125–143. MR**223638**, DOI 10.1007/BF00281362
R. E. O’Malley, Jr., - L. M. Perko,
*Boundary layer analysis of the wide capillary tube*, Arch. Rational Mech. Anal.**45**(1972), 120–133. MR**345511**, DOI 10.1007/BF00253041
—, - Murray H. Protter and Hans F. Weinberger,
*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861** - A. B. Vasil′eva,
*Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives*, Uspehi Mat. Nauk**18**(1963), no. 3 (111), 15–86 (Russian). MR**0158137**

*On singular perturbation problems with interior nonuniformities*, J. Math. Mech.

**19**(1970), 1103-1112.

*Singularly perturbed two-point boundary value problems with*${(y’)^n},\,n\, > \,2$,

*nonlinearities*, Arch. Rational Mech. Anal. (to appear).

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**260**(1980), 527-552 - MSC: Primary 34E15
- DOI: https://doi.org/10.1090/S0002-9947-1980-0574797-6
- MathSciNet review: 574797