On the ranges of analytic functions

Author:
J. S. Hwang

Journal:
Trans. Amer. Math. Soc. **260** (1980), 623-629

MSC:
Primary 30D40

DOI:
https://doi.org/10.1090/S0002-9947-1980-0574804-0

MathSciNet review:
574804

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Following Doob, we say that a function $f(z)$ analytic in the unit disk *U* has the property $K(\rho )$ if $f(0) = 0$ and for some $\operatorname {arc} A$ on the unit circle whose measure $\left | A \right | \geqslant 2\rho > 0$, \[ \lim \inf \limits _{i \to \infty } \left | {f({P_i})} \right | \geqslant 1 {\text {where}} {P_i} \to P \in A {\text {and}} {P_i} \in U.\] We recently have solved a problem of Doob by showing that there is an integer $N(\rho )$ such that no function with the property $K(\rho )$ can satisfy \[ (1 - \left | z \right |)\left | {{f_n}’ (z)} \right | \leqslant 1/n {\text {for}} z \in U, {\text {where}} n > N(\rho ).\] The function \[ {f_n}(z) = 1 + (1 - {z^n})/{n^2},\] shows that the condition ${f_n}(0) = 0$ is necessary and cannot be replaced by ${f_n}(0) = r{e^{i\alpha }}$, for $r > 1$. Naturally, we may ask whether this can be replaced by ${f_n}(0) = r{e^{i\alpha }}$, for $r < 1$? The answer turns out to be yes, when $n > N (r, \rho )$, where \[ N(r, \rho ) \doteqdot (1/(1 - r))\log (1/(1 - \cos \rho )).\] .

- F. Bagemihl and W. Seidel,
*Koebe arcs and Fatou points of normal functions*, Comment. Math. Helv.**36**(1961), 9–18. MR**141786**, DOI https://doi.org/10.1007/BF02566888 - E. F. Collingwood and A. J. Lohwater,
*The theory of cluster sets*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR**0231999** - Joseph L. Doob,
*The ranges of analytic functions*, Ann. of Math. (2)**36**(1935), no. 1, 117–126. MR**1503212**, DOI https://doi.org/10.2307/1968668
G. H. Hardy and J. E. Littlewood, - J. S. Hwang,
*The range of a gap series*, Canad. Math. Bull.**18**(1975), no. 5, 753–754. MR**412396**, DOI https://doi.org/10.4153/CMB-1975-130-7
---, - J. S. Hwang,
*On an extremal property of Doob’s class*, Trans. Amer. Math. Soc.**252**(1979), 393–398. MR**534128**, DOI https://doi.org/10.1090/S0002-9947-1979-0534128-6 - Olli Lehto and K. I. Virtanen,
*Boundary behaviour and normal meromorphic functions*, Acta Math.**97**(1957), 47–65. MR**87746**, DOI https://doi.org/10.1007/BF02392392

*A further note on Abel’s theorem*, Proc. London Math. Soc.

**25**(1926), 219-236.

*On two problems of Doob about the ranges of analytic functions*, Notices Amer. Math. Soc.

**25**(1978), A-429.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30D40

Retrieve articles in all journals with MSC: 30D40

Additional Information

Keywords:
The range and analytic function

Article copyright:
© Copyright 1980
American Mathematical Society