On the ranges of analytic functions
HTML articles powered by AMS MathViewer
- by J. S. Hwang PDF
- Trans. Amer. Math. Soc. 260 (1980), 623-629 Request permission
Abstract:
Following Doob, we say that a function $f(z)$ analytic in the unit disk U has the property $K(\rho )$ if $f(0) = 0$ and for some $\operatorname {arc} A$ on the unit circle whose measure $\left | A \right | \geqslant 2\rho > 0$, \[ \lim \inf \limits _{i \to \infty } \left | {f({P_i})} \right | \geqslant 1 {\text {where}} {P_i} \to P \in A {\text {and}} {P_i} \in U.\] We recently have solved a problem of Doob by showing that there is an integer $N(\rho )$ such that no function with the property $K(\rho )$ can satisfy \[ (1 - \left | z \right |)\left | {{f_n}’ (z)} \right | \leqslant 1/n {\text {for}} z \in U, {\text {where}} n > N(\rho ).\] The function \[ {f_n}(z) = 1 + (1 - {z^n})/{n^2},\] shows that the condition ${f_n}(0) = 0$ is necessary and cannot be replaced by ${f_n}(0) = r{e^{i\alpha }}$, for $r > 1$. Naturally, we may ask whether this can be replaced by ${f_n}(0) = r{e^{i\alpha }}$, for $r < 1$? The answer turns out to be yes, when $n > N (r, \rho )$, where \[ N(r, \rho ) \doteqdot (1/(1 - r))\log (1/(1 - \cos \rho )).\] .References
- F. Bagemihl and W. Seidel, Koebe arcs and Fatou points of normal functions, Comment. Math. Helv. 36 (1961), 9–18. MR 141786, DOI 10.1007/BF02566888
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
- Joseph L. Doob, The ranges of analytic functions, Ann. of Math. (2) 36 (1935), no. 1, 117–126. MR 1503212, DOI 10.2307/1968668 G. H. Hardy and J. E. Littlewood, A further note on Abel’s theorem, Proc. London Math. Soc. 25 (1926), 219-236.
- J. S. Hwang, The range of a gap series, Canad. Math. Bull. 18 (1975), no. 5, 753–754. MR 412396, DOI 10.4153/CMB-1975-130-7 —, On two problems of Doob about the ranges of analytic functions, Notices Amer. Math. Soc. 25 (1978), A-429.
- J. S. Hwang, On an extremal property of Doob’s class, Trans. Amer. Math. Soc. 252 (1979), 393–398. MR 534128, DOI 10.1090/S0002-9947-1979-0534128-6
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 260 (1980), 623-629
- MSC: Primary 30D40
- DOI: https://doi.org/10.1090/S0002-9947-1980-0574804-0
- MathSciNet review: 574804