On a simplicial complex associated to the monodromy
HTML articles powered by AMS MathViewer
- by Gerald Leonard Gordon
- Trans. Amer. Math. Soc. 261 (1980), 93-101
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576865-1
- PDF | Request permission
Abstract:
Suppose we have a complex analytic family, ${V_t}$, $\left | t \right | \leqslant 1$, such that the generic fibre is a nonsingular complex manifold of complex dimension n. Let T denote the monodromy induced from going once around the singular fibre and let I denote the identity map. We shall associate to the singular fibre a simplicial complex $\Gamma$, which is at most n-dimensional. Then under certain conditions on the family ${V_t}$ (which are satisfied for the Milnor fibration of an isolated singularity or if the ${V_t}$ are compact Kähler), there is an integer $N > 0$ such that ${({T^N} - I)^k}{H_k}({V_t}) = 0$ if and only if ${H_k}(\Gamma ) = 0$.References
- V. I. Arnol′d, Critical points of smooth functions, and their normal forms, Uspehi Mat. Nauk 30 (1975), no. 5(185), 3–65 (Russian). MR 0420689
- André Blanchard, Sur les variétés analytiques complexes, Ann. Sci. École Norm. Sup. (3) 73 (1956), 157–202 (French). MR 0087184
- C. H. Clemens Jr., Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc. 136 (1969), 93–108. MR 233814, DOI 10.1090/S0002-9947-1969-0233814-9
- C. H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977), no. 2, 215–290. MR 444662
- Gerald Leonard Gordon, A geometric study of the monodromy of complex analytic surfaces, Invent. Math. 40 (1977), no. 1, 11–35. MR 450267, DOI 10.1007/BF01389859
- Gerald Leonard Gordon, On the degeneracy of a spectral sequence associated to normal crossings, Pacific J. Math. 90 (1980), no. 2, 389–396. MR 600638
- Phillip Griffiths and Wilfried Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 31–127. MR 0419850 H. Hironaka, Bimeromorphic maps, mimeographed notes, Warwick, 1971.
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
- K. Kodaira, On the structure of compact complex analytic surfaces. III, Amer. J. Math. 90 (1968), 55–83. MR 228019, DOI 10.2307/2373426
- B. Malgrange, Letter to the editors, Invent. Math. 20 (1973), 171–172. MR 330502, DOI 10.1007/BF01404064
- M. Sebastiani and R. Thom, Un résultat sur la monodromie, Invent. Math. 13 (1971), 90–96 (French). MR 293122, DOI 10.1007/BF01390095
- Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257. MR 429885, DOI 10.1007/BF01403146
- J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525–563. MR 0485870
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 261 (1980), 93-101
- MSC: Primary 32C40; Secondary 14D05, 32G13
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576865-1
- MathSciNet review: 576865