On the group of volume-preserving diffeomorphisms of $\textbf {R}^{n}$
HTML articles powered by AMS MathViewer
- by Dusa McDuff
- Trans. Amer. Math. Soc. 261 (1980), 103-113
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576866-3
- PDF | Request permission
Abstract:
The group of all diffeomorphisms of ${\textbf {R}^n}$ which preserve a given volume form is shown to be perfect when $n \geqslant 3$. Some useful factorizations of such diffeomorphisms are also obtained.References
- Augustin Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978), no. 2, 174–227 (French). MR 490874, DOI 10.1007/BF02566074 A. Banyaga and J. Pulido, On the group of contact diffeomorphisms of ${\textbf {R}^{n + 1}}$ (preprint).
- R. E. Greene and K. Shiohama, Diffeomorphisms and volume-preserving embeddings of noncompact manifolds, Trans. Amer. Math. Soc. 255 (1979), 403–414. MR 542888, DOI 10.1090/S0002-9947-1979-0542888-3 W. Ling, The simplicity of certain groups of manifold automorphisms (preprint).
- A. B. Krygin, Extension of diffeomorphisms that preserve volume, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 72–76 (Russian). MR 0368067
- Dusa McDuff, On groups of volume-preserving diffeomorphisms and foliations with transverse volume form, Proc. London Math. Soc. (3) 43 (1981), no. 2, 295–320. MR 628279, DOI 10.1112/plms/s3-43.2.295
- Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286–294. MR 182927, DOI 10.1090/S0002-9947-1965-0182927-5 W. Thurston, On the structure of the group of volume preserving diffeomorphisms (preprint).
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 261 (1980), 103-113
- MSC: Primary 58D05
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576866-3
- MathSciNet review: 576866