Isotopy types of knots of codimension two
HTML articles powered by AMS MathViewer
- by M. Ε . Farber
- Trans. Amer. Math. Soc. 261 (1980), 185-209
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576871-7
- PDF | Request permission
Abstract:
In this paper the classification of n-dimensional knots in ${S^{n + 2}}$, bounding r-connected manifolds, where $3r \geqslant n + 1 \geqslant 6$, in terms of stable homotopy theory is suggested.References
- Glen E. Bredon, Regular $\textbf {O}(n)$-manifolds, suspension of knots, and knot periodicity, Bull. Amer. Math. Soc. 79 (1973), 87β91. MR 310901, DOI 10.1090/S0002-9904-1973-13105-2
- M. Ε . Farber, Classification of certain knots of codimension two, Dokl. Akad. Nauk SSSR 240 (1978), no.Β 1, 32β35 (Russian). MR 0515702
- J. F. P. Hudson, Embeddings of bounded manifolds, Proc. Cambridge Philos. Soc. 72 (1972), 11β20. MR 298679, DOI 10.1017/s0305004100050908
- C. Kearton, Blanchfield duality and simple knots, Trans. Amer. Math. Soc. 202 (1975), 141β160. MR 358796, DOI 10.1090/S0002-9947-1975-0358796-3
- C. Kearton, An algebraic classification of some even-dimensional knots, Topology 15 (1976), no.Β 4, 363β373. MR 442948, DOI 10.1016/0040-9383(76)90030-6
- Richard K. Lashof and Julius L. Shaneson, Classification of knots in codimension two, Bull. Amer. Math. Soc. 75 (1969), 171β175. MR 242175, DOI 10.1090/S0002-9904-1969-12197-X
- J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9β16. MR 179803, DOI 10.1016/0040-9383(65)90045-5
- J. Levine, A classification of differentiable knots, Ann. of Math. (2) 82 (1965), 15β50. MR 180981, DOI 10.2307/1970561
- J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537β554. MR 200922, DOI 10.2307/1970459
- J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185β198. MR 266226, DOI 10.1007/BF02567325
- C. P. Rourke, Embedded handle theory, concordance and isotopy, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp.Β 431β438. MR 0279816
- H. Seifert, Γber das Geschlecht von Knoten, Math. Ann. 110 (1935), no.Β 1, 571β592 (German). MR 1512955, DOI 10.1007/BF01448044
- E. H. Spanier, Function spaces and duality, Ann. of Math. (2) 70 (1959), 338β378. MR 107862, DOI 10.2307/1970107
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- H. F. Trotter, On $S$-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173β207. MR 645546, DOI 10.1007/BF01394094
- C. T. C. Wall, Classification problems in differential topology. IV. Thickenings, Topology 5 (1966), 73β94. MR 192509, DOI 10.1016/0040-9383(66)90005-X
- George W. Whitehead, Recent advances in homotopy theory, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 5, American Mathematical Society, Providence, R.I., 1970. MR 0309097
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 261 (1980), 185-209
- MSC: Primary 57Q45; Secondary 55P25
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576871-7
- MathSciNet review: 576871