Hardy spaces and rearrangements
HTML articles powered by AMS MathViewer
- by Burgess Davis
- Trans. Amer. Math. Soc. 261 (1980), 211-233
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576872-9
- PDF | Request permission
Abstract:
Let f be an integrable valued function on the unit circle in the complex plane, and let g be the rearrangement of f satisfying $g({e^{i\theta }}) \geqslant g({e^{i\varphi }})$ if $0 \leqslant \theta < \varphi < 2\pi$. Define \[ G(\theta ) = \int _{ - \theta }^\theta {g({e^{i\varphi }})} d\varphi \] . It is shown that some rearrangement of f is in $\operatorname {Re} {H^1}$, that is, the distribution of f is the distribution of a function in $\operatorname {Re} {H^1}$, if and only if $\int _0^\pi {|G(\theta )/\theta |} d\theta < \infty$, and that, if any rearrangement of f is in $\operatorname {Re} {H^1}$, then g is. The existence and form of rearrangements minimizing the ${H^1}$ norm are investigated. It is proved that f is in $\operatorname {Re} {H^1}$ if and only if some rotation of f is in the space dyadic ${H^1}$ of martingales. These results are extended to other ${H^p}$ spaces.References
- L. Alfhors, Conformal invariants, McGraw-Hill, New York, 1973.
- Albert Baernstein II, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27 (1978), no. 5, 833–852. MR 503717, DOI 10.1512/iumj.1978.27.27055
- Albert Bernstein II, Some sharp inequalities for conjugate functions, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 409–416. MR 545280
- D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class $H^{p}$, Trans. Amer. Math. Soc. 157 (1971), 137–153. MR 274767, DOI 10.1090/S0002-9947-1971-0274767-6
- D. L. Burkholder and R. F. Gundy, Boundary behaviour of harmonic functions in a half-space and Brownian motion, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 4, 195–212 (English, with French summary). MR 365691
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- Burgess Davis, Brownian motion and analytic functions, Ann. Probab. 7 (1979), no. 6, 913–932. MR 548889 M. Essen and D. Shea (to appear).
- Adriano M. Garsia, Martingale inequalities: Seminar notes on recent progress, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. MR 0448538
- Carl Herz, $H_{p}$-spaces of martingales, $0<p\leq 1$, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 189–205. MR 372987, DOI 10.1007/BF00533241
- G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc. 81 (1956), 294–319. MR 79377, DOI 10.1090/S0002-9947-1956-0079377-3 A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1968.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 261 (1980), 211-233
- MSC: Primary 42A50; Secondary 30D55, 42A61, 42B30, 60G46, 60J65
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576872-9
- MathSciNet review: 576872