## Quadratic forms and the Birman-Craggs homomorphisms

HTML articles powered by AMS MathViewer

- by Dennis Johnson
- Trans. Amer. Math. Soc.
**261**(1980), 235-254 - DOI: https://doi.org/10.1090/S0002-9947-1980-0576873-0
- PDF | Request permission

## Abstract:

Let ${\mathcal {M}_g}$ be the mapping class group of a genus*g*orientable surface

*M*, and ${\mathcal {J}_g}$ the subgroup of those maps acting trivially on the homology group ${H_1}(M, Z)$. Birman and Craggs produced homomorphisms from ${\mathcal {J}_g}$ to ${Z_2}$ via the Rochlin invariant and raised the question of enumerating them; in this paper we answer their question. It is shown that the homomorphisms are closely related to the quadratic forms on ${H_1}(M, {Z_2})$ which induce the intersection form; in fact, they are in 1-1 correspondence with those quadratic forms of Arf invariant zero. Furthermore, the methods give a description of the quotient of ${\mathcal {J}_g}$ by the intersection of the kernels of all these homomorphisms. It is a ${Z_2}$-vector space isomorphic to a certain space of cubic polynomials over ${H_1}(M, {Z_2})$. The dimension is then computed and found to be $\left ( {\begin {array}{*{20}{c}} {2g} \\ 3 \\ \end {array} } \right ) + \left ( {\begin {array}{*{20}{c}} {2g} \\ 2 \\ \end {array} } \right )$ . These results are also extended to the case of a surface with one boundary component, and in this situation the linear relations among the various homomorphisms are also determined.

## References

- Cahit Arf,
*Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I*, J. Reine Angew. Math.**183**(1941), 148–167 (German). MR**8069**, DOI 10.1515/crll.1941.183.148 - Joan S. Birman and R. Craggs,
*The $\mu$-invariant of $3$-manifolds and certain structural properties of the group of homeomorphisms of a closed, oriented $2$-manifold*, Trans. Amer. Math. Soc.**237**(1978), 283–309. MR**482765**, DOI 10.1090/S0002-9947-1978-0482765-9 - Michael Freedman and Robion Kirby,
*A geometric proof of Rochlin’s theorem*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 85–97. MR**520525** - F. González-Acuña,
*Dehn’s construction on knots*, Bol. Soc. Mat. Mexicana (2)**15**(1970), 58–79. MR**356022** - C. McA. Gordon,
*Knots, homology spheres, and contractible $4$-manifolds*, Topology**14**(1975), 151–172. MR**402762**, DOI 10.1016/0040-9383(75)90024-5 - John Milnor and Dale Husemoller,
*Symmetric bilinear forms*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73, Springer-Verlag, New York-Heidelberg, 1973. MR**0506372**
F. J. MacWilliams and N. J. A. Sloane, - Jerome Powell,
*Two theorems on the mapping class group of a surface*, Proc. Amer. Math. Soc.**68**(1978), no. 3, 347–350. MR**494115**, DOI 10.1090/S0002-9939-1978-0494115-8 - Friedhelm Waldhausen,
*Heegaard-Zerlegungen der $3$-Sphäre*, Topology**7**(1968), 195–203 (German). MR**227992**, DOI 10.1016/0040-9383(68)90027-X

*The theory of error-correcting codes*, vol. 2, American Elsevier, New York, 1977. (See Chapter 13, Sections 2-5, particularly Theorems 4, 8, 12.)

## Bibliographic Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**261**(1980), 235-254 - MSC: Primary 57N10; Secondary 57N05
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576873-0
- MathSciNet review: 576873