Vanishing theorems and Kählerity for strongly pseudoconvex manifolds
HTML articles powered by AMS MathViewer
- by Vo Van Tan
- Trans. Amer. Math. Soc. 261 (1980), 297-302
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576877-8
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 291 (1985), 379-380.
Abstract:
A precise vanishing theorem of Kodaira-Nakano type for strongly pseudoconvex manifolds and Nakano semipositive vector bundles is established. This result answers affirmatively a question posed by Grauert and Riemenschneider. However an analogous version of vanishing theorem of Akizuki-Nakano type for strongly pseudoconvex manifolds and Nakano semipositive line bundles does not hold in general. A counterexample for this fact is explicitly constructed. Furthermore we prove that any strongly pseudoconvex manifold with 1-dimensional exceptional subvariety is Kählerian; in particular any strongly pseudoconvex surface is Kählerian.References
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 137127, DOI 10.1007/BF01441136
- Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292 (German). MR 302938, DOI 10.1007/BF01403182
- Hans Grauert and Oswald Riemenschneider, Kählersche Mannigfaltigkeiten mit hyper-$q$-konvexem Rand, Problems in analysis (Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 61–79 (German). MR 0355107
- H. Hironaka and H. Rossi, On the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 156 (1964), 313–333. MR 171784, DOI 10.1007/BF01361027
- Hideaki Kazama, Approximation theorem and application to Nakano’s vanishing theorem for weakly $1$-complete manifolds, Mem. Fac. Sci. Kyushu Univ. Ser. A 27 (1973), 221–240. MR 430334, DOI 10.2206/kyushumfs.27.221
- Yoichi Miyaoka, Extension theorems for Kähler metrics, Proc. Japan Acad. 50 (1974), 407–410. MR 463483
- Shigeo Nakano, Vanishing theorems for weakly $1$-complete manifolds, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 169–179. MR 0367313
- Shigeo Nakano, Vanishing theorems for weakly 1-complete manifolds. II, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 1, 101–110. MR 0382735, DOI 10.2977/prims/1195192175
- Vo Van Tan, On the embedding problem for $1$-convex spaces, Trans. Amer. Math. Soc. 256 (1979), 185–197. MR 546914, DOI 10.1090/S0002-9947-1979-0546914-7
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 261 (1980), 297-302
- MSC: Primary 32L20; Secondary 32F30, 53C55
- DOI: https://doi.org/10.1090/S0002-9947-1980-0576877-8
- MathSciNet review: 576877