On the Wall finiteness obstruction for the total space of certain fibrations
HTML articles powered by AMS MathViewer
- by Hans J. Munkholm and Erik Kjaer Pedersen
- Trans. Amer. Math. Soc. 261 (1980), 529-545
- DOI: https://doi.org/10.1090/S0002-9947-1980-0580901-6
- PDF | Request permission
Abstract:
The problem of computing the Wall finiteness obstruction for the total space of a fibration $p: E \to B$ in terms of that for the base and homological data of the fiber has been considered by D. R. Anderson and by E. K. Pedersen and L. R. Taylor. We generalize their results and show how the problem is related to the algebraically defined transfer map ${\varphi ^{\ast }}: {K_0}({\textbf {Z}}{\pi _1}(B)) \to {K_0}({\textbf {Z}}{\pi _1}(E))$, $\varphi = {p_{\ast }}: {\pi _1}(E) \to {\pi _1}(B)$, whenever the latter is defined.References
- Douglas R. Anderson, Generalized product theorems for torsion invariants with applications to flat bundles, Bull. Amer. Math. Soc. 78 (1972), 465β469. MR 293636, DOI 10.1090/S0002-9904-1972-12947-1
- Douglas R. Anderson, The obstruction to the finiteness of the total space of a flat bundle, Amer. J. Math. 95 (1973), 281β293. MR 334227, DOI 10.2307/2373786
- Douglas R. Anderson, The Wall invariant of certain $S^{1}$ bundles, Proc. Amer. Math. Soc. 31 (1972), 529β535. MR 287545, DOI 10.1090/S0002-9939-1972-0287545-5
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480 K. Ehrlich, Ph.D. Thesis, Cornell University, 1977. β, Finiteness obstruction of fiber spaces, Purdue University, 1978 (preprint).
- Karel Ehrlich, Fibrations and a transfer map in algebraic $K$-theory, J. Pure Appl. Algebra 14 (1979), no.Β 2, 131β136. MR 524182, DOI 10.1016/0022-4049(79)90002-1
- P. J. Hilton and D. Rees, Natural maps of extension functors and a theorem of R. G. Swan, Proc. Cambridge Philos. Soc. 57 (1961), 489β502. MR 124377, DOI 10.1017/s0305004100035544
- V. J. Lal, Wall obstruction of a fibration, Invent. Math. 6 (1968), 67β77. MR 231380, DOI 10.1007/BF01389834
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- Erik Kjaer Pedersen and Lawrence R. Taylor, The Wall finiteness obstruction for a fibration, Amer. J. Math. 100 (1978), no.Β 4, 887β896. MR 509078, DOI 10.2307/2373914
- Irving Reiner, Class groups and Picard groups of group rings and orders, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 26, American Mathematical Society, Providence, R.I., 1976. MR 0404410
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp.Β 77β169 (French). MR 0385006
- Richard G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR 0308195
- Richard G. Swan, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267β291. MR 124895, DOI 10.2307/1970135
- Richard G. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111β120. MR 469906, DOI 10.1090/S0002-9947-1978-0469906-4
- C. T. C. Wall, Finiteness conditions for $\textrm {CW}$-complexes, Ann. of Math. (2) 81 (1965), 56β69. MR 171284, DOI 10.2307/1970382
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 261 (1980), 529-545
- MSC: Primary 55R05
- DOI: https://doi.org/10.1090/S0002-9947-1980-0580901-6
- MathSciNet review: 580901