The Rayleigh-Schrödinger expansion of the Gibbs state of a classical Heisenberg ferromagnet
HTML articles powered by AMS MathViewer
- by William G. Faris
- Trans. Amer. Math. Soc. 261 (1980), 579-587
- DOI: https://doi.org/10.1090/S0002-9947-1980-0580904-1
- PDF | Request permission
Abstract:
The equilibrium Gibbs state of a classical Heisenberg ferromagnet is a probability measure on an infinite product of spheres. The Kirkwood-Salsburg equations may be iterated to produce a convergent high temperature expansion of this measure about a product measure. Here we show that this expansion may also be obtained as the Rayleigh-Schrödinger expansion of the ground state eigenvector of a differential operator. The operator describes a Markovian time evolution of the ferromagnet.References
- William G. Faris, The stochastic Heisenberg model, J. Functional Analysis 32 (1979), no. 3, 342–352. MR 538860, DOI 10.1016/0022-1236(79)90045-4
- J. Fröhlich, B. Simon, and Thomas Spencer, Infrared bounds, phase transitions and continuous symmetry breaking, Comm. Math. Phys. 50 (1976), no. 1, 79–95. MR 421531, DOI 10.1007/BF01608557
- C. Gruber and D. Merlini, Spin-${1\over 2}$ lattice system. Partial-trace method and symmetry breakdown, Physica 67 (1973), 308–322. MR 359558, DOI 10.1016/0031-8914(73)90035-9
- Richard A. Holley and Daniel W. Stroock, Applications of the stochastic Ising model to the Gibbs states, Comm. Math. Phys. 48 (1976), no. 3, 249–265. MR 428984, DOI 10.1007/BF01617873
- Robert B. Israel, High-temperature analyticity in classical lattice systems, Comm. Math. Phys. 50 (1976), no. 3, 245–257. MR 446250, DOI 10.1007/BF01609405
- Albert Messiah, Quantum mechanics. Vol. II, North-Holland Publishing Co., Amsterdam; Interscience Publishers (a division of John Wiley & Sons, Inc.), New York, 1962. Translated from the French by J. Potter. MR 0147125
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 261 (1980), 579-587
- MSC: Primary 82A05; Secondary 47A55, 60K35
- DOI: https://doi.org/10.1090/S0002-9947-1980-0580904-1
- MathSciNet review: 580904