The product of two countably compact topological groups
HTML articles powered by AMS MathViewer
- by Eric K. van Douwen
- Trans. Amer. Math. Soc. 262 (1980), 417-427
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586725-8
- PDF | Request permission
Abstract:
We use MA ( = Martin’s Axiom) to construct two countably compact topological groups whose product is not countably compact. To this end we first use MA to construct an infinite countably compact topological group which has no nontrivial convergent sequences.References
- P. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Konink. Akad. Wetensch., Afd. Nat., Sectie 1, 14 (1929), 1-96.
- Allen R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1969/70), 185–193. MR 251697, DOI 10.4064/fm-66-2-185-193 E. Čech and B. Pospíšil, Sur les espaces compacts, Publ. Fac. Sci. Univ. Masaryk Brno 258 (1938), 1-14. W. W. Comfort, Letter to K. A. Ross, August 1, 1966.
- W. W. Comfort and Kenneth A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483–496. MR 207886
- W. W. Comfort and Victor Saks, Countably compact groups and finest totally bounded topologies, Pacific J. Math. 49 (1973), 33–44. MR 372104 E. K. van Douwen, Homogeneity of $\beta G$ (if G is a topological group), Colloq. Math. (to appear). —, The product of two normal initially K-compact spaces, Trans. Amer. Math. Soc. (to appear).
- R. Engelking, Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287–304. MR 196692, DOI 10.4064/fm-57-3-287-304
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- John Ginsburg and Victor Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), no. 2, 403–418. MR 380736 A. Hajnal and L. Juhász, On hereditarily $\alpha$-Lindelöf and $\alpha$-separable spaces. II, Fund. Math. 81 (1974), 147-158.
- A. Hajnal and I. Juhász, A separable normal topological group need not be Lindelöf, General Topology and Appl. 6 (1976), no. 2, 199–205. MR 431086 E. Hewitt and K. A. Ross, Abstract harmonic analysis, Academic Press, New York; Springer-Verlag, Berlin and New York, 1963. I. Juhász, Review of [B], MR 40 #4924.
- Kenneth Kunen, Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299–306. MR 314619, DOI 10.1090/S0002-9947-1972-0314619-7
- L. N. Ivanovskiĭ, On a conjecture of P. S. Alexandrov, Dokl. Akad. Nauk SSSR 123 (1958), 785–786 (Russian). MR 0102569
- R. McKenzie and J. D. Monk, On automorphism groups of Boolean algebras, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 951–988. MR 0376476
- J. Novák, On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106–112. MR 60212, DOI 10.4064/fm-40-1-106-112
- W. M. Priestley, A sequentially closed countable dense subset of $I^{I}$, Proc. Amer. Math. Soc. 24 (1970), 270–271. MR 249547, DOI 10.1090/S0002-9939-1970-0249547-2
- Victor Saks, Ultrafilter invariants in topological spaces, Trans. Amer. Math. Soc. 241 (1978), 79–97. MR 492291, DOI 10.1090/S0002-9947-1978-0492291-9
- Victor Saks and R. M. Stephenson Jr., Products of ${\mathfrak {m}}$-compact spaces, Proc. Amer. Math. Soc. 28 (1971), 279–288. MR 273570, DOI 10.1090/S0002-9939-1971-0273570-6
- Hidetaka Terasaka, On Cartesian product of compact spaces, Osaka Math. J. 4 (1952), 11–15. MR 51500
- J. de Vries, Pseudocompactness and the Stone-Čech compactification for topological groups, Nieuw Arch. Wisk. (3) 23 (1975), no. 1, 35–48. MR 401978
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 262 (1980), 417-427
- MSC: Primary 22A05; Secondary 03E50, 54A35, 54D30
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586725-8
- MathSciNet review: 586725