Nonexistence of nontrivial $cm”$-harmonic 1-forms on a complete foliated Riemannian manifold
HTML articles powered by AMS MathViewer
- by Haruo Kitahara
- Trans. Amer. Math. Soc. 262 (1980), 429-435
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586726-X
- PDF | Request permission
Abstract:
We study the nonexistence of nontrivial $\square ''$-harmonic 1-forms on a complete foliated riemannian manifold with positive definite Ricci curvature. It is well known that the harmonic 1-form on a compact and orientable riemannian manifold with positive definite Ricci curvature is trivial. Our main theorem is an extension of this fact in the complete foliated riemannian case.References
- Haruo Kitahara, Remarks on square-integrable basic cohomology spaces on a foliated Riemannian manifold, Kodai Math. J. 2 (1979), no. 2, 187–193. MR 548394
- Haruo Kitahara, On a parametrix form in a certain $V$-submersion, Geometry and differential geometry (Proc. Conf., Univ. Haifa, Haifa, 1979), Lecture Notes in Math., vol. 792, Springer, Berlin, 1980, pp. 264–298. MR 585877
- Bruce L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959), 119–132. MR 107279, DOI 10.2307/1970097
- Bruce L. Reinhart, Harmonic integrals on foliated manifolds, Amer. J. Math. 81 (1959), 529–536. MR 107280, DOI 10.2307/2372756
- Izu Vaisman, Variétés riemanniennes feuilletées, Czechoslovak Math. J. 21(96) (1971), 46–75 (French). MR 287572
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 262 (1980), 429-435
- MSC: Primary 57R30; Secondary 58A14
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586726-X
- MathSciNet review: 586726