## Composition factors of the principal series representations of the group $\textrm {Sp}(n, 1)$

HTML articles powered by AMS MathViewer

- by M. W. Baldoni Silva and H. Kraljević PDF
- Trans. Amer. Math. Soc.
**262**(1980), 447-471 Request permission

## Abstract:

Using Vogan’s algorithm the composition factors of any principal series representation of the group $Sp(n, 1)$ are determined.## References

- M. Welleda Baldoni Silva,
*The embeddings of the discrete series in the principal series for semisimple Lie groups of real rank one*, Trans. Amer. Math. Soc.**261**(1980), no. 2, 303–368. MR**580893**, DOI 10.1090/S0002-9947-1980-0580893-X - Harish-Chandra,
*Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions*, Acta Math.**113**(1965), 241–318. MR**219665**, DOI 10.1007/BF02391779 - Harish-Chandra,
*Discrete series for semisimple Lie groups. II. Explicit determination of the characters*, Acta Math.**116**(1966), 1–111. MR**219666**, DOI 10.1007/BF02392813 - Sigurđur Helgason,
*Differential geometry and symmetric spaces*, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR**0145455** - Takeshi Hirai,
*On irreducible representations of the Lorentz group of $n-\textrm {th}$ order*, Proc. Japan Acad.**38**(1962), 258–262. MR**191436** - A. W. Knapp and N. R. Wallach,
*Szegö kernels associated with discrete series*, Invent. Math.**34**(1976), no. 3, 163–200. MR**419686**, DOI 10.1007/BF01403066 - A. W. Knapp and Gregg Zuckerman,
*Classification of irreducible tempered representations of semi-simple Lie groups*, Proc. Nat. Acad. Sci. U.S.A.**73**(1976), no. 7, 2178–2180. MR**460545**, DOI 10.1073/pnas.73.7.2178 - Hrvoje Kraljević,
*Representations of the universal convering group of the group $\textrm {SU}(n,\,1)$*, Glasnik Mat. Ser. III**8(28)**(1973), 23–72 (English, with Serbo-Croatian summary). MR**330355** - Hrvoje Kraljević,
*On representations of the group $SU(n,1)$*, Trans. Amer. Math. Soc.**221**(1976), no. 2, 433–448. MR**409725**, DOI 10.1090/S0002-9947-1976-0409725-6 - R. P. Langlands,
*On the classification of irreducible representations of real algebraic groups*, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR**1011897**, DOI 10.1090/surv/031/03 - Dragan Miličić,
*Asymptotic behaviour of matrix coefficients of the discrete series*, Duke Math. J.**44**(1977), no. 1, 59–88. MR**430164** - Birgit Speh and David A. Vogan Jr.,
*Reducibility of generalized principal series representations*, Acta Math.**145**(1980), no. 3-4, 227–299. MR**590291**, DOI 10.1007/BF02414191 - Ernest Thieleker,
*On the quasi-simple irreducible representations of the Lorentz groups*, Trans. Amer. Math. Soc.**179**(1973), 465–505. MR**325856**, DOI 10.1090/S0002-9947-1973-0325856-0 - David A. Vogan Jr.,
*Irreducible characters of semisimple Lie groups. I*, Duke Math. J.**46**(1979), no. 1, 61–108. MR**523602** - Nolan R. Wallach,
*Harmonic analysis on homogeneous spaces*, Pure and Applied Mathematics, No. 19, Marcel Dekker, Inc., New York, 1973. MR**0498996** - Gregg Zuckerman,
*Tensor products of finite and infinite dimensional representations of semisimple Lie groups*, Ann. of Math. (2)**106**(1977), no. 2, 295–308. MR**457636**, DOI 10.2307/1971097 - E. M. Stein,
*Analysis in matrix spaces and some new representations of $\textrm {SL}(N,\,C)$*, Ann. of Math. (2)**86**(1967), 461–490. MR**219670**, DOI 10.2307/1970611

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**262**(1980), 447-471 - MSC: Primary 22E46
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586728-3
- MathSciNet review: 586728