## On the singularities of Gegenbauer (ultraspherical) expansions

HTML articles powered by AMS MathViewer

- by Ahmed I. Zayed PDF
- Trans. Amer. Math. Soc.
**262**(1980), 487-503 Request permission

## Abstract:

The results of Gilbert on the location of the singular points of an analytic function $f(z)$ given by Gegenbauer (ultraspherical) series expansion $f(z) = \Sigma _{n = 0}^\infty {a_n} C_n^\mu (z)$ are extended to the case where the series converges to a distribution. On the other hand, this generalizes Walter’s results on distributions given by Legendre series: $f(z) = \Sigma _{n = 0}^\infty {a_n} C_n^{1/2}(z)$. The singularities of the analytic representation of $f(z)$ are compared to those of the associated power series $g(z) = \Sigma _{n = 0}^\infty {a_n}{z^n}$. The notion of value of a distribution at a point is used to study the boundary behavior of the associated power series. A sufficient condition for Abel summability of Gegenbauer series is also obtained in terms of the distribution to which the series converges.## References

- Hans Bremermann,
*Distributions, complex variables, and Fourier transforms*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1965. MR**0208364** - Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi,
*Higher transcendental functions. Vols. I, II*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR**0058756** - Robert P. Gilbert,
*Constructive methods for elliptic equations*, Lecture Notes in Mathematics, Vol. 365, Springer-Verlag, Berlin-New York, 1974. MR**0447784** - Robert P. Gilbert,
*Function theoretic methods in partial differential equations*, Mathematics in Science and Engineering, Vol. 54, Academic Press, New York-London, 1969. MR**0241789** - R. P. Gilbert,
*Bergman’s integral operator method in generalized axially symmetric potential theory*, J. Mathematical Phys.**5**(1964), 983–997. MR**165131**, DOI 10.1063/1.1704199 - R. P. Gilbert,
*Integral operator methods in bi-axially symmetric potential theory*, Contributions to Differential Equations**2**(1963), 441–456 (1963). MR**156998** - R. P. Gilbert and H. C. Howard,
*Role of the integral-operator method in the theory of potential scattering*, J. Mathematical Phys.**8**(1967), 141–148. MR**210405**, DOI 10.1063/1.1705093 - R. P. Gilbert and H. C. Howard,
*A generaliztaion of a theorem of Nehari*, Bull. Amer. Math. Soc.**72**(1966), 37–39. MR**183853**, DOI 10.1090/S0002-9904-1966-11406-4
J. Hadamard, - S. Lojasiewicz,
*Sur la valeur et la limite d’une distribution en un point*, Studia Math.**16**(1957), 1–36 (French). MR**87905**, DOI 10.4064/sm-16-1-1-36 - Zeev Nehari,
*On the singularities of Legendre expansions*, J. Rational Mech. Anal.**5**(1956), 987–992. MR**80747**, DOI 10.1512/iumj.1956.5.55038
G. Szegö, - Gilbert Walter,
*On real singularities of Legendre expansions*, Proc. Amer. Math. Soc.**19**(1968), 1407–1412. MR**257635**, DOI 10.1090/S0002-9939-1968-0257635-0 - Gilbert G. Walter,
*Expansions of distributions*, Trans. Amer. Math. Soc.**116**(1965), 492–510. MR**187083**, DOI 10.1090/S0002-9947-1965-0187083-5 - A. Zygmund,
*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776**

*Théorème sur les séries entières*, Acta Math.

**22**(1898), 55-64.

*Orthogonal polynomials*, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1959.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**262**(1980), 487-503 - MSC: Primary 33A50; Secondary 46F10
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586730-1
- MathSciNet review: 586730