$L^{p}$ behavior of certain second order partial differential operators
HTML articles powered by AMS MathViewer
- by Carlos E. Kenig and Peter A. Tomas
- Trans. Amer. Math. Soc. 262 (1980), 521-531
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586732-5
- PDF | Request permission
Abstract:
We give examples of bounded inverses of polynomials in ${{\textbf {R}}^n}$, $n > 1$, which are not Fourier multipliers of ${L^p} ({{\textbf {R}}^n})$ for any $p \ne 2$. Our main tool is the Kakeya set construction of C. Fefferman. Using these results, we relate the invertibility on ${L^p}$ of a linear second order constant coefficient differential operator D on ${{\textbf {R}}^n}$ to the geometric structure of quadratic surfaces associated to its symbol d. This work was motivated by multiplier conjectures of N. Rivière and R. Strichartz.References
- Antonio Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977), no. 1, 1–22. MR 447949, DOI 10.2307/2374006
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Charles Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52. MR 320624, DOI 10.1007/BF02771772
- Karel de Leeuw, On $L_{p}$ multipliers, Ann. of Math. (2) 81 (1965), 364–379. MR 174937, DOI 10.2307/1970621
- Frederick P. Greenleaf, Martin Moskowitz, and Linda Preiss Rothschild, Unbounded conjugacy classes in Lie groups and location of central measures, Acta Math. 132 (1974), 225–243. MR 425035, DOI 10.1007/BF02392116
- Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
- Franklin T. Iha and C. F. Schubert, The spectrum of partial differential operators on $L^{p}\,(R^{n})$, Trans. Amer. Math. Soc. 152 (1970), 215–226. MR 270211, DOI 10.1090/S0002-9947-1970-0270211-2
- Carlos E. Kenig and Peter A. Tomas, On conjectures of Rivière and Strichartz, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 4, 694–697. MR 532556, DOI 10.1090/S0273-0979-1979-14674-3
- W. Littman, C. McCarthy, and N. Rivière, The non-existence of $L^{p}$ estimates for certain translation-invariant operators, Studia Math. 30 (1968), 219–229. MR 231127, DOI 10.4064/sm-30-2-219-229 J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91.
- A. Zygmund, Józef Marcinkiewicz, Wiadom. Mat. (2) 4 (1960), 11–41 (1960). (1 plate) (Polish). MR 115885 N. Rivière, Some open questions, Harmonic Analysis in Euclidean spaces, Proc. Sympos. Pure Math. vol. 35, Part 1, Amer. Math. Soc., Providence, R. I., 1979, p. xvii.
- Martin Schechter, Partial differential operators on $L^{p}\,(E^{n})$, Bull. Amer. Math. Soc. 75 (1969), 548–549. MR 254669, DOI 10.1090/S0002-9904-1969-12238-X —, Spectra of partial differential operators, North-Holland, Amsterdam and London, 1971.
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972 P. A. Tomas, On radial Fourier multipliers, Thesis, Cornell University, 1974. —, A note on invariant Fourier multipliers, preprint, 1977.
- Max Jodeit Jr., A note on Fourier multipliers, Proc. Amer. Math. Soc. 27 (1971), 423–424. MR 270072, DOI 10.1090/S0002-9939-1971-0270072-8
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 262 (1980), 521-531
- MSC: Primary 42B15; Secondary 35E20, 42A45
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586732-5
- MathSciNet review: 586732