The asymptotic behavior of gas in an $n$-dimensional porous medium
HTML articles powered by AMS MathViewer
- by Avner Friedman and Shoshana Kamin
- Trans. Amer. Math. Soc. 262 (1980), 551-563
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586735-0
- PDF | Request permission
Abstract:
Consider the flow of gas in an n-dimensional porous medium with initial density ${u_0}(x) \geqslant 0$. The density $u(x, t)$ then satisfies the nonlinear degenerate parabolic equation ${u_t} = \Delta {u^m}$ where $m > 1$ is a physical constant. Assuming that $I \equiv \int { {u_0}(x)} dx < \infty$ it is proved that $u(x, t)$ behaves asymptotically, as $t \to \infty$, like the special (explicitly given) solution $V(|x|, t)$ which is invariant by similarity transformations and which takes the initial values $\delta (x)I (\delta (x) =$ the Dirac measure) in the distribution sense.References
- D. G. Aronson and L. A. Peletier, Large time behavior of solutions of the porous medium equation in bounded domains (to appear).
- G. I. Barenblatt, Podobie, avtomodel′nost′, promezhutochnaya asimptotika, “Gidrometeoizdat”, Leningrad, 1978 (Russian). Teoriya i prilozheniya k geofizicheskoÄ gidrodinamike. [Theory and applications to geophysical hydrodynamics]. MR 556235 Ph. Benilan, OpĂ©rateurs accretifs et semigroupes dans les espaces ${L^p}\,(1\, \leqslant \,p\, \leqslant \infty )$ (to appear). H. Brezis and M. G. Crandall, Uniqueness of solutions of the initial-value problem for ${u_t}\, - \,\Delta \varphi (u)$ (to appear).
- Luis A. Caffarelli and Avner Friedman, Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc. 252 (1979), 99–113. MR 534112, DOI 10.1090/S0002-9947-1979-0534112-2
- Luis A. Caffarelli and Avner Friedman, Regularity of the free boundary of a gas flow in an $n$-dimensional porous medium, Indiana Univ. Math. J. 29 (1980), no. 3, 361–391. MR 570687, DOI 10.1512/iumj.1980.29.29027
- C. J. van Duyn and L. A. Peletier, Asymptotic behaviour of solutions of a nonlinear diffusion equation, Arch. Rational Mech. Anal. 65 (1977), no. 4, 363–377. MR 442479, DOI 10.1007/BF00250433 S. Kamenomostkaya, On a problem in the theory of filtration, Dokl. Akad. Nauk SSSR 116 (1957), 18-20.
- S. Kamenomostskaya, The asymptotic behavior of the solution of the filtration equation, Israel J. Math. 14 (1973), 76–87. MR 315292, DOI 10.1007/BF02761536
- S. Kamin, Similar solutions and the asymptotics of filtration equations, Arch. Rational Mech. Anal. 60 (1975/76), no. 2, 171–183. MR 397202, DOI 10.1007/BF00250678
- Olga OleÄnik, On some degenerate quasilinear parabolic equations, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 1, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 355–371. MR 0192205
- L. A. Peletier, Asymptotic behavior of solutions of the porous media equation, SIAM J. Appl. Math. 21 (1971), 542–551. MR 304894, DOI 10.1137/0121059
- R. E. Pattle, Diffusion from an instantaneous point source with a concentration-dependent coefficient, Quart. J. Mech. Appl. Math. 12 (1959), 407–409. MR 114505, DOI 10.1093/qjmam/12.4.407
- E. S. Sabinina, On the Cauchy problem for the equation of nonstationary gas filtration in several space variables, Soviet Math. Dokl. 2 (1961), 166–169. MR 0158190 L. Veron, Coercivité et propriétés regularisantes des semi-groupes non linéaires dans les espaces de Banach (to appear).
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 262 (1980), 551-563
- MSC: Primary 35K05; Secondary 76S05
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586735-0
- MathSciNet review: 586735