Weak subordination and stable classes of meromorphic functions
HTML articles powered by AMS MathViewer
- by Kenneth Stephenson
- Trans. Amer. Math. Soc. 262 (1980), 565-577
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586736-2
- PDF | Request permission
Abstract:
This paper introduces the notion of weak subordination: If $F$ and $G$ are meromorphic in the unit disc $\mathcal {U}$, then $F$ is weakly subordinate to $G$, written $F < G$, provided there exist analytic functions $\phi$ and $\omega :\mathcal {U} \to \mathcal {U}$, with $\phi$ an inner function, so that $F \circ \phi = G \circ \omega$. A class $\mathcal {X}$ of meromorphic functions is termed stable if $F \stackrel {w}{\prec } G$ and $G \in \mathcal {X} \Rightarrow F \in \mathcal {X}$. The motivation is recent work of Burkholder which relates the growth of a function with its range and boundary values. Assume $F$ and $G$ are meromorphic and $G$ has nontangential limits, a.e. Assume further that $F(\mathcal {U}) \cap G(\mathcal {U}) \ne \emptyset$ and $G({e^{i\theta }}) \notin F(\mathcal {U})$, a.e. This is denoted by $F < G$. Burkholder proved for several classes $\mathcal {X}$ that \begin{equation}\tag {$(\ast )$}F < G \qquad {\text {and}}\quad G \in \mathcal {X} \Rightarrow F \in \mathcal {X}.\end{equation} The main result of this paper is the Theorem: $F < G \Rightarrow F{ \prec ^w}G$. In particular, implication (*) holds for all stable classes $\mathcal {X}$. The paper goes on to study various stable classes, which include BMOA, ${H^p}$, $0 < p \leqslant \infty$, ${N_{\ast }}$, the space of functions of bounded characteristic, and the ${M^\Phi }$ spaces introduced by Burkholder. VMOA and the Bloch functions are examples of classes which are not stable.References
- Lars V. Ahlfors and Leo Sario, Riemann surfaces, Princeton Mathematical Series, No. 26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
- J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37. MR 361090
- D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math. 26 (1977), no. 2, 182–205. MR 474525, DOI 10.1016/0001-8708(77)90029-9
- D. L. Burkholder, Boundary value estimation of the range of an analytic function, Michigan Math. J. 25 (1978), no. 2, 197–211. MR 501568
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Lowell J. Hansen, Boundary values and mapping properties of $H^{p}$ functions, Math. Z. 128 (1972), 189–194. MR 311909, DOI 10.1007/BF01111701
- W. K. Hayman and Ch. Pommerenke, On analytic functions of bounded mean oscillation, Bull. London Math. Soc. 10 (1978), no. 2, 219–224. MR 500932, DOI 10.1112/blms/10.2.219
- L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1969. MR 0261018
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280
- Eric A. Nordgren, Composition operators, Canadian J. Math. 20 (1968), 442–449. MR 223914, DOI 10.4153/CJM-1968-040-4
- Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591–602 (German). MR 454017, DOI 10.1007/BF02567392
- I. I. Priwalow, Randeigenschaften analytischer Funktionen, Hochschulbücher für Mathematik, Band 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. MR 0083565
- L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276–280. MR 0276744
- Walter Rudin, A generalization of a theorem of Frostman, Math. Scand. 21 (1967), 136–143 (1968). MR 235151, DOI 10.7146/math.scand.a-10853
- Walter Rudin, $L^{p}$-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), no. 3, 215–228. MR 410355, DOI 10.1512/iumj.1976.25.25018
- Kenneth Stephenson, Functions which follow inner functions, Illinois J. Math. 23 (1979), no. 2, 259–266. MR 528562
- M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 262 (1980), 565-577
- MSC: Primary 30D55; Secondary 30C80
- DOI: https://doi.org/10.1090/S0002-9947-1980-0586736-2
- MathSciNet review: 586736