Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A maximal function characterization of $H^{p}$ on the space of homogeneous type


Author: Akihito Uchiyama
Journal: Trans. Amer. Math. Soc. 262 (1980), 579-592
MSC: Primary 46J15; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9947-1980-0586737-4
MathSciNet review: 586737
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let ${\psi _0}(x) \in {\mathcal {S(}}{R^n}{\text {)}}$ and let $\int _{{R^n}} {{\psi _0}(y) dy \ne 0}$.For $f \in {\mathcal {S}’}{R^n}$, $x \in {R^n}$ and $M \geqslant 0$, let \[ {f^ + }(x) = \sup \limits _{t > 0} \left | {f {\ast } {\psi _{0t}}(x)} \right |\] and let ${f^{{\ast }M}}(x) = \sup \{ \left | {f {\ast } {\psi _t}(x)} \right |: t > 0$, $\psi (y) \in {\mathcal {S(}}{R^n})$, $\operatorname {supp} \psi \subset \{ y \in {R^n}: \left | y \right | < 1\}$, ${\left \| {{D^\alpha }\psi } \right \|_{{L^\infty }}} \leqslant 1$ for any multi-index $\alpha = ({\alpha _1}, \ldots , {\alpha _n})$ such that $\Sigma _{i = 1}^n {\alpha _i} \leqslant M\}$ where ${\psi _t}(y) = {t^{ - n}}\psi (y/t)$. Fefferman-Stein [11] showed Theorem A. Let $p > 0$. Then there exists $M(p, n)$, depending only on p and n, such that if $M \geqslant M(p, n)$, then \[ c\left \| {{f^ + }} \right \|{L^p} \leqslant \left \| {{f^{{\ast }M}}} \right \|{L^p} \leqslant {\textbf {C}}\left \| {{f^ + }} \right \|{L^p}\] for any $f \in {\mathcal {S}’}({R^n})$, where c and C are positive constants depending only on ${\psi _0}$, p, M and n. We investigate this on the space of homogeneous type with certain assumptions.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46J15, 46E30

Retrieve articles in all journals with MSC: 46J15, 46E30


Additional Information

Keywords: <IMG WIDTH="33" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${H^p}$">, space of homogeneous type, BMO, Lipschitz space, maximal function, Poisson kernel, Poisson-Szeg&#246; kernel
Article copyright: © Copyright 1980 American Mathematical Society