Nonstandard analysis and lattice statistical mechanics: a variational principle
HTML articles powered by AMS MathViewer
- by A. E. Hurd
- Trans. Amer. Math. Soc. 263 (1981), 89-110
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590413-2
- PDF | Request permission
Abstract:
Using nonstandard methods we construct a configuration space appropriate for the statistical mechanics of lattice systems with infinitely many particles and infinite volumes. Nonstandard representations of generalized equilibrium measures are obtained, yielding as a consequence a simple proof of the existence of standard equilibrium measures. As another application we establish an extension for generalized equilibrium measures of the basic variational principle of Landord and Ruelle. The same methods are applicable to continuous systems, and will be presented in a later paper.References
- Robert M. Anderson, A non-standard representation for Brownian motion and Itô integration, Israel J. Math. 25 (1976), no. 1-2, 15–46. MR 464380, DOI 10.1007/BF02756559
- Martin Davis, Applied nonstandard analysis, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 0505473
- H. Föllmer and J. L. Snell, An “inner” variational principle for Markov fields on a graph, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 39 (1977), no. 3, 187–195. MR 445642, DOI 10.1007/BF00535471
- L. L. Helms and P. A. Loeb, Applications of nonstandard analysis to spin models, J. Math. Anal. Appl. 69 (1979), no. 2, 341–352. MR 538222, DOI 10.1016/0022-247X(79)90147-1 A. E. Hurd, Nonstandard models in nonequilibrium statistical mechanics, Notices Amer. Math. Soc. 24 (1977), A-506.
- H. Jerome Keisler, An infinitesimal approach to stochastic analysis, Mem. Amer. Math. Soc. 48 (1984), no. 297, x+184. MR 732752, DOI 10.1090/memo/0297
- Oscar E. Lanford III, Time evolution of large classical systems, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, pp. 1–111. MR 0479206
- O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969), 194–215. MR 256687
- A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I, Arch. Rational Mech. Anal. 59 (1975), no. 3, 219–239. MR 391830, DOI 10.1007/BF00251601
- Peter A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113–122. MR 390154, DOI 10.1090/S0002-9947-1975-0390154-8
- R. A. Minlos, Lectures on statistical physics, Uspehi Mat. Nauk 23 (1968), no. 1 (139), 133–190 (Russian). MR 0223152
- A. Ostebee, P. Gambardella, and M. Dresden, “Nonstandard” approach to the thermodynamic limit, Phys. Rev. A (3) 13 (1976), no. 2, 878–881. MR 395505, DOI 10.1103/PhysRevA.13.878
- Chris Preston, Random fields, Lecture Notes in Mathematics, Vol. 534, Springer-Verlag, Berlin-New York, 1976. MR 0448630
- Abraham Robinson, Non-standard analysis, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 432–440. MR 0142464 —, Non-standard analysis, North-Holland, Amsterdam, 1970.
- David Ruelle, Statistical mechanics: Rigorous results, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0289084
- K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Pure and Applied Mathematics, No. 72, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0491163
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 263 (1981), 89-110
- MSC: Primary 82A68; Secondary 03H10, 28A20, 60K35
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590413-2
- MathSciNet review: 590413