Stationary logic and ordinals
HTML articles powered by AMS MathViewer
- by D. G. Seese
- Trans. Amer. Math. Soc. 263 (1981), 111-124
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590414-4
- PDF | Request permission
Abstract:
The $L({\mathbf {aa}})$-theory of ordinals is investigated. It is proved that this theory is decidable and that each ordinal is finitely determinate.References
- Jon Barwise, Matt Kaufmann, and Michael Makkai, Stationary logic, Ann. Math. Logic 13 (1978), no. 2, 171–224. MR 486629, DOI 10.1016/0003-4843(78)90003-7 A. Baudisch, The elementary theory of Abelian groups with $m$-chains of pure subgroups, Fund. Math. (to appear).
- Andreas Baudisch, Detlef Seese, Hans-Peter Tuschik, and Martin Weese, Decidability and generalized quantifiers, Mathematical Research, vol. 3, Akademie-Verlag, Berlin, 1980. MR 588326 A. Baudisch and H. P. Tuschik, $L({\mathbf {aa}}) = L({Q_1})$ for trees, unpublished manuscript, 1979.
- Shai Ben-David, On Shelah’s compactness of cardinals, Israel J. Math. 31 (1978), no. 1, 34–56. MR 506381, DOI 10.1007/BF02761379 X. Caicedo, A back-and-forth characterization of elementary equivalence in stationary logic, preprint, 1977.
- Paul C. Eklof and Alan H. Mekler, Stationary logic of finitely determinate structures, Ann. Math. Logic 17 (1979), no. 3, 227–269. MR 556893, DOI 10.1016/0003-4843(79)90009-3 H. Herre, A remark to a paper of D. Seese, unpublished manuscript, 1979.
- H. Herre and H. Wolter, Entscheidbarkeit der Theorie der linearen Ordung in $L_{G1}$, Z. Math. Logik Grundlagen Math. 23 (1977), no. 3, 273–282 (German). MR 446943, DOI 10.1002/malq.19770231802 M. Kaufmann, Some results in stationary logic, Ph.D. Thesis, Univ. of Wisconsin, 1978.
- Handbook of mathematical logic, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR 457132 H. Läuchli and J. Leonhard, On the elementary theory of linear order, Fund. Math. 59 (1966), 109-116. L. D. Lipner, Some aspects of generalized quantifiers, Doctoral Dissertation, Univ. of California, Berkeley, 1970. J. A. Makowsky, Elementary equivalence and definability in stationary logic, preprint, 1977.
- J. A. Makowsky, Quantifying over countable sets: positive vs. stationary logic, Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977) Studies in Logic and the Foundations of Mathematics, vol. 96, North-Holland, Amsterdam-New York, 1978, pp. 183–193. MR 519813 A. Mekler, All ordinals are finitely determinate, notes, 1979. —, Every ordinal is finitely determinate. II, notes, 1979. —, Another linear order which is not finitely determinate, notes, 1979.
- Michael O. Rabin, A simple method for undecidability proofs and some applications, Logic, Methodology and Philos. Sci. (Proc. 1964 Internat. Congr.), North-Holland, Amsterdam, 1965, pp. 58–68. MR 0221924 F. D. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 338-384.
- D. Seese, Decidability and generalized quantifiers, Logic Colloquium ’77 (Proc. Conf., Wrocław, 1977) Studies in Logic and the Foundations of Mathematics, vol. 96, North-Holland, Amsterdam-New York, 1978, pp. 229–237. MR 519818 —, Stationäre Logik-Beschränkte Mengen-Entscheidbarkeit, Dissertation (B), Berlin, 1979. D. G. Seese, H. P. Tuschik and M. Weese, Linear orders and Boolean algebras in stationary logic, notes, 1979. D. G. Seese and M. Weese, Ehrenfeucht’s game for stationary logic, unpublished notes, 1977.
- Saharon Shelah, Generalized quantifiers and compact logic, Trans. Amer. Math. Soc. 204 (1975), 342–364. MR 376334, DOI 10.1090/S0002-9947-1975-0376334-6
- Saharon Shelah, The monadic theory of order, Ann. of Math. (2) 102 (1975), no. 3, 379–419. MR 491120, DOI 10.2307/1971037
- H. P. Tuschik, On the decidability of the theory of linear orderings in the language $L(Q_{1})$, Set theory and hierarchy theory, V (Proc. Third Conf., Bierutowice, 1976) Lecture Notes in Math., Vol. 619, Springer, Berlin, 1977, pp. 291–304. MR 0476475
- H.-P. Tuschik, On the decidability of the theory of linear orderings with generalized quantifiers, Fund. Math. 107 (1980), no. 1, 21–32. MR 584656, DOI 10.4064/fm-107-1-21-32 S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.
- Shlomo Vinner, A generalization of Ehrenfeucht’s game and some applications, Israel J. Math. 12 (1972), 279–298. MR 314591, DOI 10.1007/BF02790755
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 263 (1981), 111-124
- MSC: Primary 03C80
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590414-4
- MathSciNet review: 590414