## Subnormal operators, Toeplitz operators and spectral inclusion

HTML articles powered by AMS MathViewer

- by Gerard E. Keough
- Trans. Amer. Math. Soc.
**263**(1981), 125-135 - DOI: https://doi.org/10.1090/S0002-9947-1981-0590415-6
- PDF | Request permission

## Abstract:

Let $S$ be a subnormal operator on the Hilbert space $H$, and let $N = \int z \;dE(z)$ be its minimal normal extension on $K$. Let $\mu$ be a scalar spectral measure for $N$. If $f \in {L^\infty }(\mu )$, define ${T_f} = Pf(N){|_H}:\;H \to H$, where $P:K \to H$ denotes orthogonal projection. $S$ has the ${C^ \ast }$-Spectral Inclusion Property (${C^ \ast }$-SIP) if $\sigma (f(N)) \subseteq \sigma ({T_f})$, for all $f \in C(\sigma (N))$, and $S$ has the ${W^\ast }$-Spectral Inclusion Property (${W^\ast }$-SIP) if $\sigma (f(N)) \subseteq \sigma ({T_f})$, for all $f \in {L^\infty }(\mu )$. It is shown that $S$ has the ${C^\ast }$-SIP if and only if $\sigma (N) = \Pi (S)$, the approximate point spectrum of $S$. This is equivalent to requiring that $E(\Delta )K$ have angle $0$ with $H$, for all nonempty, relatively open $\Delta \subseteq \sigma (N)$. $S$ has the ${W^\ast }$-SIP if this angle condition holds for all proper Borel subsets of $\sigma (N)$. If $S$ is pure and has the ${C^\ast }$ or ${W^\ast }$-SIP, then it is shown that $\sigma (f(N)) \subseteq {\sigma _e}({T_f})$, for all appropriate $f$.## References

- M. B. Abrahamse and R. G. Douglas,
*A class of subnormal operators related to multiply-connected domains*, Advances in Math.**19**(1976), no. 1, 106–148. MR**397468**, DOI 10.1016/0001-8708(76)90023-2 - J. W. Bunce and J. A. Deddens,
*On the normal spectrum of a subnormal operator*, Proc. Amer. Math. Soc.**63**(1977), no. 1, 107–110. MR**435912**, DOI 10.1090/S0002-9939-1977-0435912-3 - L. A. Coburn,
*Weyl’s theorem for nonnormal operators*, Michigan Math. J.**13**(1966), 285–288. MR**201969** - Ronald G. Douglas,
*Banach algebra techniques in operator theory*, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR**0361893** - R. G. Douglas and Carl Pearcy,
*Spectral theory of generalized Toeplitz operators*, Trans. Amer. Math. Soc.**115**(1965), 433–444. MR**199706**, DOI 10.1090/S0002-9947-1965-0199706-5 - P. A. Fillmore, J. G. Stampfli, and J. P. Williams,
*On the essential numerical range, the essential spectrum, and a problem of Halmos*, Acta Sci. Math. (Szeged)**33**(1972), 179–192. MR**322534** - Richard Frankfurt,
*Subnormal weighted shifts and related function spaces*, J. Math. Anal. Appl.**52**(1975), no. 3, 471–489. MR**482334**, DOI 10.1016/0022-247X(75)90074-8 - Paul R. Halmos,
*Introduction to Hilbert space and the theory of spectral multiplicity*, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1957) edition. MR**1653399** - Paul R. Halmos,
*Spectra and spectral manifolds*, Ann. Soc. Polon. Math.**25**(1952), 43–49 (1953). MR**0055581** - Paul R. Halmos,
*A Hilbert space problem book*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0208368** - P. R. Halmos,
*Ten problems in Hilbert space*, Bull. Amer. Math. Soc.**76**(1970), 887–933. MR**270173**, DOI 10.1090/S0002-9904-1970-12502-2 - Philip Hartman and Aurel Wintner,
*On the spectra of Toeplitz’s matrices*, Amer. J. Math.**72**(1950), 359–366. MR**36936**, DOI 10.2307/2372039 - Robert F. Olin,
*Functional relationships between a subnormal operator and its minimal normal extension*, Pacific J. Math.**63**(1976), no. 1, 221–229. MR**420324** - Carl M. Pearcy,
*Some recent developments in operator theory*, Regional Conference Series in Mathematics, No. 36, American Mathematical Society, Providence, R.I., 1978. MR**0487495** - Allen L. Shields,
*Weighted shift operators and analytic function theory*, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR**0361899**

## Bibliographic Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**263**(1981), 125-135 - MSC: Primary 47B20; Secondary 47B35
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590415-6
- MathSciNet review: 590415