## Holomorphic actions of $\textrm {Sp}(n, \textbf {R})$ with noncompact isotropy groups

HTML articles powered by AMS MathViewer

- by Hugo Rossi
- Trans. Amer. Math. Soc.
**263**(1981), 207-230 - DOI: https://doi.org/10.1090/S0002-9947-1981-0590420-X
- PDF | Request permission

## Abstract:

$U(p,q)$ is a subgroup of ${S_p}(n,R)$, for $p + q = n$. ${B_q} = {S_p}(n,r)/U(p,q)$ is realized as an open subset of the manifold of Lagrangian subspaces of ${{\mathbf {C}}^n} \times {{\mathbf {C}}^n}$. It is shown that ${B_q}$ carries a $(pq)$-pseudoconvex exhaustion function. ${B_{pq}} = {S_p}(n,r)/U(p) \times U(q)$ carries two distinct holomorphic structures making the projection to ${B_q}$, ${B_0}$ holomorphic respectively. The geometry of the correspondence between ${B_q}$ and ${B_0}$ via ${B_{pq}}$ is investigated.## References

- Aldo Andreotti and Hans Grauert,
*Théorème de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France**90**(1962), 193–259 (French). MR**150342**, DOI 10.24033/bsmf.1581 - Aldo Andreotti and François Norguet,
*Problème de Levi et convexité holomorphe pour les classes de cohomologie*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)**20**(1966), 197–241 (French). MR**199439** - M. F. Atiyah, N. J. Hitchin, and I. M. Singer,
*Self-duality in four-dimensional Riemannian geometry*, Proc. Roy. Soc. London Ser. A**362**(1978), no. 1711, 425–461. MR**506229**, DOI 10.1098/rspa.1978.0143 - L. Auslander and B. Kostant,
*Polarization and unitary representations of solvable Lie groups*, Invent. Math.**14**(1971), 255–354. MR**293012**, DOI 10.1007/BF01389744 - Phillip Griffiths and Wilfried Schmid,
*Locally homogeneous complex manifolds*, Acta Math.**123**(1969), 253–302. MR**259958**, DOI 10.1007/BF02392390 - Victor Guillemin and Shlomo Sternberg,
*Geometric asymptotics*, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR**0516965**, DOI 10.1090/surv/014
L. Hörmander, - K. Kodaira,
*A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds*, Ann. of Math. (2)**75**(1962), 146–162. MR**133841**, DOI 10.2307/1970424 - Bertram Kostant,
*Quantization and unitary representations. I. Prequantization*, Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, Vol. 170, Springer, Berlin, 1970, pp. 87–208. MR**0294568** - Yozô Matsushima,
*On the intermediate cohomology group of a holomorphic line bundle over a complex torus*, Osaka Math. J.**16**(1979), no. 3, 617–631. MR**551580** - H. K. Nickerson, D. C. Spencer, and N. E. Steenrod,
*Advanced calculus*, D. Van Nostrand Co., Inc., Toronto-Princeton, N.J.-New York-London, 1959. MR**0123651** - H. Rossi and M. Vergne,
*Group representations on Hilbert spaces defined in terms of $\partial _{b}$-cohomology on the Silov boundary of a Siegel domain*, Pacific J. Math.**65**(1976), no. 1, 193–207. MR**422517**, DOI 10.2140/pjm.1976.65.193
C. L. Siegel, - Shlomo Sternberg,
*Symplectic homogeneous spaces*, Trans. Amer. Math. Soc.**212**(1975), 113–130. MR**379759**, DOI 10.1090/S0002-9947-1975-0379759-8 - R. Tolimieri,
*Heisenberg manifolds and theta functions*, Trans. Amer. Math. Soc.**239**(1978), 293–319. MR**487050**, DOI 10.1090/S0002-9947-1978-0487050-7 - R. O. Wells Jr.,
*Complex manifolds and mathematical physics*, Bull. Amer. Math. Soc. (N.S.)**1**(1979), no. 2, 296–336. MR**520077**, DOI 10.1090/S0273-0979-1979-14596-8

*An introduction to complex analysis in several complex variables*, Van Nostrand, Princeton, N. J., 1966.

*Topics in complex function theory*. III, Interscience, New York, 1973.

## Bibliographic Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**263**(1981), 207-230 - MSC: Primary 22E30; Secondary 32N10
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590420-X
- MathSciNet review: 590420