Holomorphic actions of $\textrm {Sp}(n, \textbf {R})$ with noncompact isotropy groups
HTML articles powered by AMS MathViewer
- by Hugo Rossi
- Trans. Amer. Math. Soc. 263 (1981), 207-230
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590420-X
- PDF | Request permission
Abstract:
$U(p,q)$ is a subgroup of ${S_p}(n,R)$, for $p + q = n$. ${B_q} = {S_p}(n,r)/U(p,q)$ is realized as an open subset of the manifold of Lagrangian subspaces of ${{\mathbf {C}}^n} \times {{\mathbf {C}}^n}$. It is shown that ${B_q}$ carries a $(pq)$-pseudoconvex exhaustion function. ${B_{pq}} = {S_p}(n,r)/U(p) \times U(q)$ carries two distinct holomorphic structures making the projection to ${B_q}$, ${B_0}$ holomorphic respectively. The geometry of the correspondence between ${B_q}$ and ${B_0}$ via ${B_{pq}}$ is investigated.References
- Aldo Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259 (French). MR 150342, DOI 10.24033/bsmf.1581
- Aldo Andreotti and François Norguet, Problème de Levi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 197–241 (French). MR 199439
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 293012, DOI 10.1007/BF01389744
- Phillip Griffiths and Wilfried Schmid, Locally homogeneous complex manifolds, Acta Math. 123 (1969), 253–302. MR 259958, DOI 10.1007/BF02392390
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR 0516965, DOI 10.1090/surv/014 L. Hörmander, An introduction to complex analysis in several complex variables, Van Nostrand, Princeton, N. J., 1966.
- K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math. (2) 75 (1962), 146–162. MR 133841, DOI 10.2307/1970424
- Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, Vol. 170, Springer, Berlin, 1970, pp. 87–208. MR 0294568
- Yozô Matsushima, On the intermediate cohomology group of a holomorphic line bundle over a complex torus, Osaka Math. J. 16 (1979), no. 3, 617–631. MR 551580
- H. K. Nickerson, D. C. Spencer, and N. E. Steenrod, Advanced calculus, D. Van Nostrand Co., Inc., Toronto-Princeton, N.J.-New York-London, 1959. MR 0123651
- H. Rossi and M. Vergne, Group representations on Hilbert spaces defined in terms of $\partial _{b}$-cohomology on the Silov boundary of a Siegel domain, Pacific J. Math. 65 (1976), no. 1, 193–207. MR 422517, DOI 10.2140/pjm.1976.65.193 C. L. Siegel, Topics in complex function theory. III, Interscience, New York, 1973.
- Shlomo Sternberg, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975), 113–130. MR 379759, DOI 10.1090/S0002-9947-1975-0379759-8
- R. Tolimieri, Heisenberg manifolds and theta functions, Trans. Amer. Math. Soc. 239 (1978), 293–319. MR 487050, DOI 10.1090/S0002-9947-1978-0487050-7
- R. O. Wells Jr., Complex manifolds and mathematical physics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 2, 296–336. MR 520077, DOI 10.1090/S0273-0979-1979-14596-8
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 263 (1981), 207-230
- MSC: Primary 22E30; Secondary 32N10
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590420-X
- MathSciNet review: 590420