## Robinson’s consistency theorem in soft model theory

HTML articles powered by AMS MathViewer

- by Daniele Mundici
- Trans. Amer. Math. Soc.
**263**(1981), 231-241 - DOI: https://doi.org/10.1090/S0002-9947-1981-0590421-1
- PDF | Request permission

## Abstract:

In a soft model-theoretical context, we investigate the properties of logics satisfying the Robinson consistency theorem; the latter is for many purposes the same as the Craig interpolation theorem together with compactness. Applications are given to H. Friedman’s third and fourth problem.## References

- K. Jon Barwise,
*Axioms for abstract model theory*, Ann. Math. Logic**7**(1974), 221–265. MR**376337**, DOI 10.1016/0003-4843(74)90016-3 - J. T. Baldwin and A. H. Lachlan,
*On strongly minimal sets*, J. Symbolic Logic**36**(1971), 79–96. MR**286642**, DOI 10.2307/2271517 - Kim B. Bruce,
*Ideal models and some not so ideal problems in the model theory of $L(Q)$*, J. Symbolic Logic**43**(1978), no. 2, 304–321. MR**499380**, DOI 10.2307/2272829
T. Dodd, R. B. Jensen and B. J. Koppelberg, - Solomon Feferman,
*Applications of many-sorted interpolation theorems*, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1974, pp. 205–223. MR**0406772**
—, - J. Flum,
*First-order logic and its extensions*, $\vDash$ISILC Logic Conference (Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974) Lecture Notes in Math., Vol. 499, Springer, Berlin, 1975, pp. 248–310. MR**0401465** - Harvey Friedman,
*One hundred and two problems in mathematical logic*, J. Symbolic Logic**40**(1975), 113–129. MR**369018**, DOI 10.2307/2271891 - John E. Hutchinson,
*Model theory via set theory*, Israel J. Math.**24**(1976), no. 3-4, 286–304. MR**437336**, DOI 10.1007/BF02834760 - Per Lindström,
*On extensions of elementary logic*, Theoria**35**(1969), 1–11. MR**244013**, DOI 10.1111/j.1755-2567.1969.tb00356.x - J. A. Makowsky and S. Shelah,
*The theorems of Beth and Craig in abstract model theory. I. The abstract setting*, Trans. Amer. Math. Soc.**256**(1979), 215–239. MR**546916**, DOI 10.1090/S0002-9947-1979-0546916-0
—, - J. A. Makowsky, Saharon Shelah, and Jonathan Stavi,
*$\Delta$-logics and generalized quantifiers*, Ann. Math. Logic**10**(1976), no. 2, 155–192. MR**457146**, DOI 10.1016/0003-4843(76)90021-8 - Daniele Mundici,
*Applications of many-sorted Robinson consistency theorem*, Z. Math. Logik Grundlagen Math.**27**(1981), no. 2, 181–188. MR**611855**, DOI 10.1002/malq.19810271103
—, - Daniele Mundici,
*Compactness = JEP in any logic*, Fund. Math.**116**(1983), no. 2, 99–108. MR**716223**, DOI 10.4064/fm-116-2-99-108
—,

*Some applications up to*$K$, Lecture Notes in Math. (to appear).

*Two notes on abstract model theory*. I, Fund. Math.

**82**(1974), 153-165; II,

**89**(1975), 111-130.

*Positive results in abstract model theory*, Ann. Math. Logic (to appear).

*An algebraic result about soft model theoretical equivalence relations with an application to H. Friedman’s fourth problem*, J. Symbolic Logic (to appear). —,

*Compactness + Craig interpolation = Robinson’s consistency in any logic*(preprint, 1979).

*Compactness, interpolation and H. Friedman’s third problem*(to appear).

## Bibliographic Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**263**(1981), 231-241 - MSC: Primary 03C95; Secondary 03C80
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590421-1
- MathSciNet review: 590421