## Plane models for Riemann surfaces admitting certain half-canonical linear series. II

HTML articles powered by AMS MathViewer

- by Robert D. M. Accola
- Trans. Amer. Math. Soc.
**263**(1981), 243-259 - DOI: https://doi.org/10.1090/S0002-9947-1981-0590422-3
- PDF | Request permission

## Abstract:

For $r \geqslant 2$, closed Riemann surfaces of genus $3r + 2$ admitting two simple half-canonical linear series $g_{3r + 1}^r,h_{3r + 1}^r$ are characterized by the existence of certain plane models of degree $2r + 3$ where the linear series are apparent. The plane curves have $r - 2$ $3$-fold singularities, one $(2r - 1)$-fold singularity $Q$, and two other double points (typically tacnodes) whose tangents pass through $Q$. The lines through $Q$ cut out a $g_4^1$ which is unique. The case where the $g_4^1$ is the set of orbits of a noncyclic group of automorphisms of order four is characterized by the existence of $3r + 3$ pairs of half-canonical linear series of dimension $r - 1$, where the sum of the two linear series in any pair is linearly equivalent to $g_{3r + 1}^r + h_{3r + 1}^r$.## References

- Robert D. M. Accola,
*Riemann surfaces with automorphism groups admitting partitions*, Proc. Amer. Math. Soc.**21**(1969), 477–482. MR**237764**, DOI 10.1090/S0002-9939-1969-0237764-9 - Robert D. M. Accola,
*Algebraic curves and half-canonical linear series*, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974, pp. 13–22. MR**0354679** - Robert D. M. Accola,
*Some loci of Teichmüller space for genus five defined by vanishing theta nulls*, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 11–18. MR**0374411** - Robert D. M. Accola,
*Riemann surfaces, theta functions, and abelian automorphisms groups*, Lecture Notes in Mathematics, Vol. 483, Springer-Verlag, Berlin-New York, 1975. MR**0470198** - Robert D. M. Accola,
*On Castelnuovo’s inequality for algebraic curves. I*, Trans. Amer. Math. Soc.**251**(1979), 357–373. MR**531984**, DOI 10.1090/S0002-9947-1979-0531984-2
—, - H. M. Farkas,
*Automorphisms of compact Riemann surfaces and the vanishing of theta constants*, Bull. Amer. Math. Soc.**73**(1967), 231–232. MR**213547**, DOI 10.1090/S0002-9904-1967-11694-X
L. Kraus, - Henrik H. Martens,
*Varieties of special divisors on a curve. II*, J. Reine Angew. Math.**233**(1968), 89–100. MR**241420**, DOI 10.1515/crll.1968.233.89 - Bernhard Riemann,
*Gesammelte mathematische Werke und wissenschaftlicher Nachlass*, Dover Publications, Inc., New York, N.Y., 1953 (German). MR**0052364** - Robert J. Walker,
*Algebraic Curves*, Princeton Mathematical Series, vol. 13, Princeton University Press, Princeton, N. J., 1950. MR**0033083** - Heinrich Von Weber,
*Ueber gewisse in der Theorie der A bel’schen Functionen auftretende Ausnahmefälle*, Math. Ann.**13**(1878), no. 1, 35–48 (German). MR**1509953**, DOI 10.1007/BF01442504

*Plane models for Riemann surfaces admitting certain half-canonical linear series*. I (Proc. Conference on Riemann surfaces, June 1978). G. Castelnuovo,

*Richerche di geometria sulle curve algebriche*, Atti Accad. Sci. Torino

**24**(1889). —,

*Sur multipli du una serie lineare di gruppi di punti, etc.*, Rend. Circ. Mat. Palermo

**7**(1893), 89-110. J. L. Coolidge,

*Algebraic plane curves*, Dover, Oxford, 1931.

*Note über ausgewohnliche special Gruppen auf algebraischen Kurven*, Math. Ann.

**15**(1880), 310.

## Bibliographic Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**263**(1981), 243-259 - MSC: Primary 14H15; Secondary 30F20, 32G15
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590422-3
- MathSciNet review: 590422