Monotone decompositions of $\theta _{n}$-continua
HTML articles powered by AMS MathViewer
- by E. E. Grace and Eldon J. Vought PDF
- Trans. Amer. Math. Soc. 263 (1981), 261-270 Request permission
Abstract:
We prove the following theorem for a compact, metric ${\theta _n}$-continuum (i.e., a compact, connected, metric space that is not separated into more than $n$ components by any subcontinuum). The continuum $X$ admits a monotone, upper semicontinuous decomposition $\mathfrak {D}$ such that the elements of $\mathfrak {D}$ have void interiors and the quotient space $X/\mathfrak {D}$ is a finite graph, if and only if, for each nowhere dense subcontinuum $H$ of $X$, the continuum $T(H) = \{ x|$ if $K$ is a subcontinuum of $X$ and $x \in {K^ \circ }$, then $K \cap H \ne \emptyset \}$ is nowhere dense. The elements of the decomposition are characterized in terms of the set function $T$. An example is given showing that the condition that requires $T(x)$ to have void interior for all $x \in X$ is not strong enough to guarantee the decomposition.References
- R. W. FitzGerald, Connected sets with a finite disconnection property, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp.Β 139β173. MR 0365478
- F. Burton Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403β413. MR 25161, DOI 10.2307/2372339
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; PaΕstwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835 S. Mazurkiewicz, Sur les continus indecomposables, Fund. Math. 10 (1927), 305-310.
- Eldon J. Vought, Monotone decompositions of continua not separated by any subcontinua, Trans. Amer. Math. Soc. 192 (1974), 67β78. MR 341438, DOI 10.1090/S0002-9947-1974-0341438-X
- Eldon J. Vought, Monotone decompositions into trees of Hausdorff continua irreducible about a finite subset, Pacific J. Math. 54 (1974), no.Β 2, 253β261. MR 377830, DOI 10.2140/pjm.1974.54.253
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 263 (1981), 261-270
- MSC: Primary 54F20; Secondary 54B15
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590423-5
- MathSciNet review: 590423