## Monotone decompositions of $\theta _{n}$-continua

HTML articles powered by AMS MathViewer

- by E. E. Grace and Eldon J. Vought PDF
- Trans. Amer. Math. Soc.
**263**(1981), 261-270 Request permission

## Abstract:

We prove the following theorem for a compact, metric ${\theta _n}$-continuum (i.e., a compact, connected, metric space that is not separated into more than $n$ components by any subcontinuum). The continuum $X$ admits a monotone, upper semicontinuous decomposition $\mathfrak {D}$ such that the elements of $\mathfrak {D}$ have void interiors and the quotient space $X/\mathfrak {D}$ is a finite graph, if and only if, for each nowhere dense subcontinuum $H$ of $X$, the continuum $T(H) = \{ x|$ if $K$ is a subcontinuum of $X$ and $x \in {K^ \circ }$, then $K \cap H \ne \emptyset \}$ is nowhere dense. The elements of the decomposition are characterized in terms of the set function $T$. An example is given showing that the condition that requires $T(x)$ to have void interior for all $x \in X$ is not strong enough to guarantee the decomposition.## References

- R. W. FitzGerald,
*Connected sets with a finite disconnection property*, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp.Β 139β173. MR**0365478** - F. Burton Jones,
*Concerning non-aposyndetic continua*, Amer. J. Math.**70**(1948), 403β413. MR**25161**, DOI 10.2307/2372339 - K. Kuratowski,
*Topology. Vol. II*, Academic Press, New York-London; PaΕstwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR**0259835**
S. Mazurkiewicz, - Eldon J. Vought,
*Monotone decompositions of continua not separated by any subcontinua*, Trans. Amer. Math. Soc.**192**(1974), 67β78. MR**341438**, DOI 10.1090/S0002-9947-1974-0341438-X - Eldon J. Vought,
*Monotone decompositions into trees of Hausdorff continua irreducible about a finite subset*, Pacific J. Math.**54**(1974), no.Β 2, 253β261. MR**377830**, DOI 10.2140/pjm.1974.54.253

*Sur les continus indecomposables*, Fund. Math.

**10**(1927), 305-310.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**263**(1981), 261-270 - MSC: Primary 54F20; Secondary 54B15
- DOI: https://doi.org/10.1090/S0002-9947-1981-0590423-5
- MathSciNet review: 590423