## Degenerations of $K3$ surfaces of degree $4$

HTML articles powered by AMS MathViewer

- by Jayant Shah PDF
- Trans. Amer. Math. Soc.
**263**(1981), 271-308 Request permission

## Abstract:

A generic $K3$ surface of degree $4$ may be embedded as a nonsingular quartic surface in ${{\mathbf {P}}_3}$. Let $f:X \to \operatorname {Spec} \;{\mathbf {C}}[[t]]$ be a family of quartic surfaces such that the generic fiber is regular. Let ${\Sigma _0}$, ${\Sigma _2^0}$, ${\Sigma _4}$ be respectively a nonsingular quadric in ${{\mathbf {P}}_3}$, a cone in ${{\mathbf {P}}_3}$ over a nonsingular conic and a rational, ruled surface in ${{\mathbf {P}}_9}$ which has a section with self intersection $- 4$. We show that there exists a flat,*projective*morphism $f’:X’ \to {\text {Spec}}\;{\mathbf {C}}[[t]]$ and a map $\rho :{\text {Spec}}\:{\mathbf {C}}[[t]] \to {\text {Spec}}\:{\mathbf {C}}[[t]]$ such that (i) the generic fiber of $f’$ and the generic fiber of the pull-back of $f$ via $\rho$ are isomorphic, (ii) the fiber ${X’_0}$ of $f’$ over the closed point of ${\text {Spec}}\;{\mathbf {C}}[[t]]$ has only insignificant limit singularities and (iii) ${X’_0}$ is either a quadric surface or a double cover of ${\Sigma _0}$, ${\Sigma _2^0}$ or ${\Sigma _4}$. The theorem is proved using the geometric invariant theory.

## References

- Allen Altman and Steven Kleiman,
*Introduction to Grothendieck duality theory*, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR**0274461**, DOI 10.1007/BFb0060932 - V. I. Arnol′d,
*Local normal forms of functions*, Invent. Math.**35**(1976), 87–109. MR**467795**, DOI 10.1007/BF01390134 - Michael Artin,
*On isolated rational singularities of surfaces*, Amer. J. Math.**88**(1966), 129–136. MR**199191**, DOI 10.2307/2373050
—, - Pierre Deligne,
*Théorie de Hodge. II*, Inst. Hautes Études Sci. Publ. Math.**40**(1971), 5–57 (French). MR**498551**, DOI 10.1007/BF02684692
E. Horikawa, - Alan L. Mayer,
*Families of $K-3$ surfaces*, Nagoya Math. J.**48**(1972), 1–17. MR**330172**, DOI 10.1017/S002776300001504X - David Mumford,
*Geometric invariant theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR**0214602**, DOI 10.1007/978-3-662-00095-3 - Ragni Piene,
*Some formulas for a surface in $\textbf {P}^{3}$*, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977) Lecture Notes in Math., vol. 687, Springer, Berlin, 1978, pp. 196–235. MR**527235** - Ulf Persson and Henry Pinkham,
*Degeneration of surfaces with trivial canonical bundle*, Ann. of Math. (2)**113**(1981), no. 1, 45–66. MR**604042**, DOI 10.2307/1971133 - B. Saint-Donat,
*Projective models of $K-3$ surfaces*, Amer. J. Math.**96**(1974), 602–639. MR**364263**, DOI 10.2307/2373709 - Kyoji Saito,
*Einfach-elliptische Singularitäten*, Invent. Math.**23**(1974), 289–325 (German). MR**354669**, DOI 10.1007/BF01389749 - Judith D. Sally,
*Cohen-Macaulay local rings of maximal embedding dimension*, J. Algebra**56**(1979), no. 1, 168–183. MR**527163**, DOI 10.1016/0021-8693(79)90331-4 - Wilfried Schmid,
*Variation of Hodge structure: the singularities of the period mapping*, Invent. Math.**22**(1973), 211–319. MR**382272**, DOI 10.1007/BF01389674 - Jayant Shah,
*Insignificant limit singularities of surfaces and their mixed Hodge structure*, Ann. of Math. (2)**109**(1979), no. 3, 497–536. MR**534760**, DOI 10.2307/1971223
—, - Jayant Shah,
*Surjectivity of the period map in the case of quartic surfaces and sextic double planes*, Bull. Amer. Math. Soc.**82**(1976), no. 5, 716–718. MR**417188**, DOI 10.1090/S0002-9904-1976-14126-2 - Keiichi Watanabe,
*Certain invariant subrings are Gorenstein. I, II*, Osaka Math. J.**11**(1974), 1–8; ibid. 11 (1974), 379–388. MR**354646**
—,

*Deformations of singularities*, Tata Inst. Fundamental Research Lecture Notes, No. 54, Notes by C. S. Seshadri and A. Tannenbaum.

*On deformations of quintic surfaces*, Invent. Math.

**31**(1975), 43-85. V. S. Kulikov,

*Degenerations of*$K3$

*surfaces and Enriques surfaces*, Math. USSR-Izv.

**11**(1977), 957-989.

*A complete moduli space for*$K3$

*surfaces of degree*$2$, Ann. of Math. (to appear). —,

*Monodromy of quartic surfaces and sextic double planes*, Thesis, M.I.T., Cambridge, Mass., 1974.

*Certain invariant subrings are Gorenstein*. II, Osaka J. Math.

**11**(1974), 379-388.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**263**(1981), 271-308 - MSC: Primary 14J25; Secondary 14J10, 14J17
- DOI: https://doi.org/10.1090/S0002-9947-1981-0594410-2
- MathSciNet review: 594410