Degenerations of $K3$ surfaces of degree $4$
HTML articles powered by AMS MathViewer
- by Jayant Shah PDF
- Trans. Amer. Math. Soc. 263 (1981), 271-308 Request permission
Abstract:
A generic $K3$ surface of degree $4$ may be embedded as a nonsingular quartic surface in ${{\mathbf {P}}_3}$. Let $f:X \to \operatorname {Spec} \;{\mathbf {C}}[[t]]$ be a family of quartic surfaces such that the generic fiber is regular. Let ${\Sigma _0}$, ${\Sigma _2^0}$, ${\Sigma _4}$ be respectively a nonsingular quadric in ${{\mathbf {P}}_3}$, a cone in ${{\mathbf {P}}_3}$ over a nonsingular conic and a rational, ruled surface in ${{\mathbf {P}}_9}$ which has a section with self intersection $- 4$. We show that there exists a flat, projective morphism $f’:X’ \to {\text {Spec}}\;{\mathbf {C}}[[t]]$ and a map $\rho :{\text {Spec}}\:{\mathbf {C}}[[t]] \to {\text {Spec}}\:{\mathbf {C}}[[t]]$ such that (i) the generic fiber of $f’$ and the generic fiber of the pull-back of $f$ via $\rho$ are isomorphic, (ii) the fiber ${X’_0}$ of $f’$ over the closed point of ${\text {Spec}}\;{\mathbf {C}}[[t]]$ has only insignificant limit singularities and (iii) ${X’_0}$ is either a quadric surface or a double cover of ${\Sigma _0}$, ${\Sigma _2^0}$ or ${\Sigma _4}$. The theorem is proved using the geometric invariant theory.References
- Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461, DOI 10.1007/BFb0060932
- V. I. Arnol′d, Local normal forms of functions, Invent. Math. 35 (1976), 87–109. MR 467795, DOI 10.1007/BF01390134
- Michael Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136. MR 199191, DOI 10.2307/2373050 —, Deformations of singularities, Tata Inst. Fundamental Research Lecture Notes, No. 54, Notes by C. S. Seshadri and A. Tannenbaum.
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692 E. Horikawa, On deformations of quintic surfaces, Invent. Math. 31 (1975), 43-85. V. S. Kulikov, Degenerations of $K3$ surfaces and Enriques surfaces, Math. USSR-Izv. 11 (1977), 957-989.
- Alan L. Mayer, Families of $K-3$ surfaces, Nagoya Math. J. 48 (1972), 1–17. MR 330172, DOI 10.1017/S002776300001504X
- David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602, DOI 10.1007/978-3-662-00095-3
- Ragni Piene, Some formulas for a surface in $\textbf {P}^{3}$, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977) Lecture Notes in Math., vol. 687, Springer, Berlin, 1978, pp. 196–235. MR 527235
- Ulf Persson and Henry Pinkham, Degeneration of surfaces with trivial canonical bundle, Ann. of Math. (2) 113 (1981), no. 1, 45–66. MR 604042, DOI 10.2307/1971133
- B. Saint-Donat, Projective models of $K-3$ surfaces, Amer. J. Math. 96 (1974), 602–639. MR 364263, DOI 10.2307/2373709
- Kyoji Saito, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289–325 (German). MR 354669, DOI 10.1007/BF01389749
- Judith D. Sally, Cohen-Macaulay local rings of maximal embedding dimension, J. Algebra 56 (1979), no. 1, 168–183. MR 527163, DOI 10.1016/0021-8693(79)90331-4
- Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
- Jayant Shah, Insignificant limit singularities of surfaces and their mixed Hodge structure, Ann. of Math. (2) 109 (1979), no. 3, 497–536. MR 534760, DOI 10.2307/1971223 —, A complete moduli space for $K3$ surfaces of degree $2$, Ann. of Math. (to appear). —, Monodromy of quartic surfaces and sextic double planes, Thesis, M.I.T., Cambridge, Mass., 1974.
- Jayant Shah, Surjectivity of the period map in the case of quartic surfaces and sextic double planes, Bull. Amer. Math. Soc. 82 (1976), no. 5, 716–718. MR 417188, DOI 10.1090/S0002-9904-1976-14126-2
- Keiichi Watanabe, Certain invariant subrings are Gorenstein. I, II, Osaka Math. J. 11 (1974), 1–8; ibid. 11 (1974), 379–388. MR 354646 —, Certain invariant subrings are Gorenstein. II, Osaka J. Math. 11 (1974), 379-388.
Additional Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 263 (1981), 271-308
- MSC: Primary 14J25; Secondary 14J10, 14J17
- DOI: https://doi.org/10.1090/S0002-9947-1981-0594410-2
- MathSciNet review: 594410