Basic sequences and subspaces in Lorentz sequence spaces without local convexity
Author:
Nicolae Popa
Journal:
Trans. Amer. Math. Soc. 263 (1981), 431-456
MSC:
Primary 46A45; Secondary 46A10
DOI:
https://doi.org/10.1090/S0002-9947-1981-0594418-7
MathSciNet review:
594418
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: After some preliminary results , we give in
another proof of the result of N. J. Kalton [5] concerning the unicity of the unconditional bases of
,
.
Using this result we prove in §3 the unicity of certain bounded symmetric block bases of the subspaces of the Lorentz sequence spaces ,
. In
we show that every infinite dimensional subspace of
contains a subspace linearly homeomorphic to
,
.
Unlike the case there are subspaces of
,
, which contain no complemented subspaces of
linearly homeomorphic to
. In fact there are spaces
,
, which contain no complemented subspaces linearly homeomorphic to
. We conjecture that this is true for every
,
. The answer to the previous question seems to be important: for example we can prove that a positive complemented sublattice
of
,
, with a symmetric basis is linearly homeomorphic either to
or to
; consequently, a positive answer to this question implies that
is linearly homeomorphic to
. In
we are able to characterise the sublattices of
,
(however under a supplementary restriction concerning the sequence
, which are positive and contractive complemented, as being the order ideals of
.
Finally, in , we characterise the Mackey completion of
also in the case
,
.
- [1] Zvi Altshuler, P. G. Casazza, and Bor Luh Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973), 140–155. MR 328553, https://doi.org/10.1007/BF02764600
- [2] G. Bennett, An extension of the Riesz-Thorin theorem, Banach spaces of analytic functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio, 1976) Springer, Berlin, 1977, pp. 1–11. Lecture Notes in Math., Vol. 604. MR 0461115
- [3] P. G. Casazza and Bor Luh Lin, On symmetric basic sequences in Lorentz sequence spaces. II, Israel J. Math. 17 (1974), 191–218. MR 348443, https://doi.org/10.1007/BF02882238
- [4] D. J. H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. (3) 16 (1966), 85–106. MR 0192311, https://doi.org/10.1112/plms/s3-16.1.85
- [5] N. J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977), no. 2, 253–277. MR 433194, https://doi.org/10.1017/S0305004100053342
- [6] Gottfried Köthe, Topological vector spaces. I, Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. MR 0248498
- [7] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in 𝐿_{𝑝}-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, https://doi.org/10.4064/sm-29-3-275-326
- [8] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
- [9] Bernard Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces 𝐿^{𝑝}, Société Mathématique de France, Paris, 1974 (French). With an English summary; Astérisque, No. 11. MR 0344931
- [10] Stefan Rolewicz, Metric linear spaces, PWN-Polish Scientific Publishers, Warsaw, 1972. Monografie Matematyczne, Tom. 56. [Mathematical Monographs, Vol. 56]. MR 0438074
- [11] Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. MR 0423039
- [12] W. J. Stiles, On properties of subspaces of 𝑙_{𝑝},0<𝑝<1, Trans. Amer. Math. Soc. 149 (1970), 405–415. MR 261315, https://doi.org/10.1090/S0002-9947-1970-0261315-9
- [13] Bertram Walsh, On characterizing Köthe sequence spaces as vector lattices, Math. Ann. 175 (1968), 253–256. MR 222608, https://doi.org/10.1007/BF02063211
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A45, 46A10
Retrieve articles in all journals with MSC: 46A45, 46A10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1981-0594418-7
Keywords:
-Banach spaces,
symmetric bases,
complemented subspaces
Article copyright:
© Copyright 1981
American Mathematical Society