A lattice renorming theorem and applications to vector-valued processes
Authors:
William J. Davis, Nassif Ghoussoub and Joram Lindenstrauss
Journal:
Trans. Amer. Math. Soc. 263 (1981), 531-540
MSC:
Primary 46B30; Secondary 60G99
DOI:
https://doi.org/10.1090/S0002-9947-1981-0594424-2
MathSciNet review:
594424
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A norm, , on a Banach space
is said to be locally uniformly convex if
and
implies that
in norm. It is shown that a Banach lattice has an (order) equivalent locally uniformly convex norm if and only if the lattice is order continuous. This result is used to reduce convergence theorems for (lattice-valued) positive martingales and submartingales to the scalar case.
- [1] Alexandra Bellow, Les amarts uniformes, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 20, A1295–A1298 (French, with English summary). MR 445602
- [2] Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, PWN—Polish Scientific Publishers, Warsaw, 1975. Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58]. MR 0478168
- [3] S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21–41. MR 246341, https://doi.org/10.7146/math.scand.a-10868
- [4] Mahlon M. Day, Normed linear spaces, 3rd ed., Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. MR 0344849
- [5] Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- [6] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- [7] N. Ghoussoub and J. Michael Steele, Vector-valued subadditive processes and applications in probability, Ann. Probab. 8 (1980), no. 1, 83–95. MR 556416
- [8] Henri Heinich, Convergence des sous-martingales positives dans un Banach réticulé, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 5, A279–A280 (French, with English summary). MR 486301
- [9] W. B. Johnson and L. Tzafriri, On the local structure of subspaces of Banach lattices, Israel J. Math. 20 (1975), no. 3-4, 292–299. MR 420210, https://doi.org/10.1007/BF02760334
- [10] J. F. C. Kingman, Subadditive processes, École d’Été de Probabilités de Saint-Flour, V–1975, Springer, Berlin, 1976, pp. 167–223. Lecture Notes in Math., Vol. 539. MR 0438477
- [11] Andrzej Korzeniowski, A proof of the ergodic theorem in Banach spaces via asymptotic martingales, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 12, 1041–1044 (1979) (Russian). MR 528992
- [12] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- [13] Edith Mourier, Eléments aléatoires dans un espace de Banach, Ann. Inst. H. Poincaré 13 (1953), 161–244 (French). MR 64339
- [14] Michael Neumann, On the Strassen disintegration theorem, Arch. Math. (Basel) 29 (1977), no. 4, 413–420. MR 476988, https://doi.org/10.1007/BF01220429
- [15] J. Neveu, Discrete-parameter martingales, Revised edition, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed; North-Holland Mathematical Library, Vol. 10. MR 0402915
- [16] Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. MR 0423039
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B30, 60G99
Retrieve articles in all journals with MSC: 46B30, 60G99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1981-0594424-2
Keywords:
Banach lattice,
local uniform convexity,
renorming,
vector-valued processes,
martingales,
submartingales,
ergodic theorem
Article copyright:
© Copyright 1981
American Mathematical Society