A lattice renorming theorem and applications to vector-valued processes
HTML articles powered by AMS MathViewer
- by William J. Davis, Nassif Ghoussoub and Joram Lindenstrauss
- Trans. Amer. Math. Soc. 263 (1981), 531-540
- DOI: https://doi.org/10.1090/S0002-9947-1981-0594424-2
- PDF | Request permission
Abstract:
A norm, $||\;||$, on a Banach space $E$ is said to be locally uniformly convex if $\left \| {{x_n}} \right \| \to \left \| x \right \|$ and $\left \| {{x_n} + x} \right \| \to 2\left \| x \right \|$ implies that ${x_n} \to x$ in norm. It is shown that a Banach lattice has an (order) equivalent locally uniformly convex norm if and only if the lattice is order continuous. This result is used to reduce convergence theorems for (lattice-valued) positive martingales and submartingales to the scalar case.References
- Alexandra Bellow, Les amarts uniformes, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 20, A1295–A1298 (French, with English summary). MR 445602
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand. 22 (1968), 21–41. MR 246341, DOI 10.7146/math.scand.a-10868
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- N. Ghoussoub and J. Michael Steele, Vector-valued subadditive processes and applications in probability, Ann. Probab. 8 (1980), no. 1, 83–95. MR 556416
- Henri Heinich, Convergence des sous-martingales positives dans un Banach réticulé, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 5, A279–A280 (French, with English summary). MR 486301
- W. B. Johnson and L. Tzafriri, On the local structure of subspaces of Banach lattices, Israel J. Math. 20 (1975), no. 3-4, 292–299. MR 420210, DOI 10.1007/BF02760334
- J. F. C. Kingman, Subadditive processes, École d’Été de Probabilités de Saint-Flour, V–1975, Lecture Notes in Math., Vol. 539, Springer, Berlin, 1976, pp. 167–223. MR 0438477
- Andrzej Korzeniowski, A proof of the ergodic theorem in Banach spaces via asymptotic martingales, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 12, 1041–1044 (1979) (Russian). MR 528992
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- Edith Mourier, Eléments aléatoires dans un espace de Banach, Ann. Inst. H. Poincaré 13 (1953), 161–244 (French). MR 64339
- Michael Neumann, On the Strassen disintegration theorem, Arch. Math. (Basel) 29 (1977), no. 4, 413–420. MR 476988, DOI 10.1007/BF01220429
- J. Neveu, Discrete-parameter martingales, Revised edition, North-Holland Mathematical Library, Vol. 10, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. Translated from the French by T. P. Speed. MR 0402915
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 263 (1981), 531-540
- MSC: Primary 46B30; Secondary 60G99
- DOI: https://doi.org/10.1090/S0002-9947-1981-0594424-2
- MathSciNet review: 594424