Orientation-reversing Morse-Smale diffeomorphisms on the torus
HTML articles powered by AMS MathViewer
- by Steve Batterson
- Trans. Amer. Math. Soc. 264 (1981), 29-37
- DOI: https://doi.org/10.1090/S0002-9947-1981-0597864-0
- PDF | Request permission
Abstract:
For orientation-reversing diffeomorphisms on the torus necessary and sufficient conditions are given for an isotopy class to admit a Morse-Smale diffeomorphism with a specified periodic behavior.References
- Steve Batterson, The dynamics of Morse-Smale diffeomorphisms on the torus, Trans. Amer. Math. Soc. 256 (1979), 395–403. MR 546925, DOI 10.1090/S0002-9947-1979-0546925-1
- Paul Blanchard and John Franks, The dynamical complexity of orientation-reversing homeomorphisms of surfaces, Invent. Math. 62 (1980/81), no. 2, 333–339. MR 595592, DOI 10.1007/BF01389164
- John M. Franks, Some smooth maps with infinitely many hyperbolic periodic points, Trans. Amer. Math. Soc. 226 (1977), 175–179. MR 436221, DOI 10.1090/S0002-9947-1977-0436221-3
- Michael Handel, The entropy of orientation reversing homeomorphisms of surfaces, Topology 21 (1982), no. 3, 291–296. MR 649760, DOI 10.1016/0040-9383(82)90011-8
- William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. MR 0211390
- Carolyn C. Narasimhan, The periodic behavior of Morse-Smale diffeomorphisms on compact surfaces, Trans. Amer. Math. Soc. 248 (1979), no. 1, 145–169. MR 521698, DOI 10.1090/S0002-9947-1979-0521698-7
- Zbigniew Nitecki, Differentiable dynamics. An introduction to the orbit structure of diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971. MR 0649788
- J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385–404. MR 246316, DOI 10.1016/0040-9383(69)90024-X
- J. Palis and S. Smale, Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR 0267603
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 264 (1981), 29-37
- MSC: Primary 58F09
- DOI: https://doi.org/10.1090/S0002-9947-1981-0597864-0
- MathSciNet review: 597864