Submonotone subdifferentials of Lipschitz functions
HTML articles powered by AMS MathViewer
- by Jonathan E. Spingarn
- Trans. Amer. Math. Soc. 264 (1981), 77-89
- DOI: https://doi.org/10.1090/S0002-9947-1981-0597868-8
- PDF | Request permission
Abstract:
The class of "lowwer-${C^1}$" functions, that is functions which arise by taking the maximum of a compactly indexed family of ${C^1}$ functions, is characterized in terms of properties of the generalized subdifferential. A locally Lipschitz function is shown to be lower-${C^1}$ if and only if its subdifferential is "strictly submonotone". Other properties of functions with "submonotone" subdifferentials are investigated.References
- Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, DOI 10.1090/S0002-9947-1975-0367131-6
- Frank H. Clarke, Generalized gradients of Lipschitz functionals, Adv. in Math. 40 (1981), no. 1, 52–67. MR 616160, DOI 10.1016/0001-8708(81)90032-3
- Gérard Lebourg, Valeur moyenne pour gradient généralisé, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 19, Ai, A795–A797 (French, with English summary). MR 388097
- Robert Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15 (1977), no. 6, 959–972. MR 461556, DOI 10.1137/0315061
- George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346. MR 169064
- B. N. Pshenichnyi, Necessary conditions for an extremum, Pure and Applied Mathematics, vol. 4, Marcel Dekker, Inc., New York, 1971. Translated from the Russian by Karol Makowski; Translation edited by Lucien W. Neustadt. MR 0276845
- R. Tyrrell Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Reprint of the 1970 original; Princeton Paperbacks. MR 1451876
- R. T. Rockafellar, The multiplier method of Hestenes and Powell applied to convex programming, J. Optim. Theory Appl. 12 (1973), 555–562. MR 334953, DOI 10.1007/BF00934777
- R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976), no. 2, 97–116. MR 418919, DOI 10.1287/moor.1.2.97 —, The theory of subgradients and its applications to problems of optimization, Lecture Notes, Univ. of Montreal, Feb.-March, 1978.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 264 (1981), 77-89
- MSC: Primary 26B25; Secondary 47H05, 49A51, 58C20, 90C25
- DOI: https://doi.org/10.1090/S0002-9947-1981-0597868-8
- MathSciNet review: 597868