Characterization of some zero-dimensional separable metric spaces
HTML articles powered by AMS MathViewer
- by Jan van Mill
- Trans. Amer. Math. Soc. 264 (1981), 205-215
- DOI: https://doi.org/10.1090/S0002-9947-1981-0597877-9
- PDF | Request permission
Abstract:
Let $X$ be a separable metric zero-dimensional space for which all nonempty clopen subsets are homeomorphic. We show that, up to homeomorphism, there is at most one space $Y$ which can be written as an increasing union $\cup _{n = 1}^\infty {F_n}$ of closed sets so that for all $n \in {\mathbf {N}}$, ${F_n}$ is a copy of $X$ which is nowhere dense in ${F_{n + 1}}$. If moreover $X$ contains a closed nowhere dense copy of itself, then $Y$ is homeomorphic to ${\mathbf {Q}} \times X$ where ${\mathbf {Q}}$ denotes the space of rational numbers. This gives us topological characterizations of spaces such as ${\mathbf {Q}} \times {\mathbf {C}}$ and ${\mathbf {Q}} \times {\mathbf {P}}$.References
- Paul Alexandroff, Über nulldimensionale Punktmengen, Math. Ann. 98 (1928), no. 1, 89–106 (German). MR 1512393, DOI 10.1007/BF01451582
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041 L. E. J. Brouwer, On the structure of perfect sets of points, Proc. Akad. Amsterdam 12 (1910), 785-794.
- Eric K. van Douwen, A measure that knows which sets are homeomorphic, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 115, Math. Centrum, Amsterdam, 1979, pp. 67–71. MR 565826 —, Destroying nowhere dense copies or group structure in strongly homogeneous zero-dimensional spaces (to appear).
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- R. Engelking, W. Holsztyński, and R. Sikorski, Some examples of Borel sets, Colloq. Math. 15 (1966), 271–274. MR 201314, DOI 10.4064/cm-15-2-271-274
- J. de Groot and R. H. McDowell, Extension of mappings on metric spaces, Fund. Math. 48 (1959/60), 251–263. MR 124026, DOI 10.4064/fm-48-3-251-263
- A. Gutek, On extending homeomorphisms on the Cantor set, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 115, Math. Centrum, Amsterdam, 1979, pp. 105–116. MR 565830
- Paul R. Halmos, Lectures on Boolean algebras, Van Nostrand Mathematical Studies, No. 1, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR 0167440
- P. R. Halmos, Permutations of sequences and the Schröder-Bernstein theorem, Proc. Amer. Math. Soc. 19 (1968), 509–510. MR 226590, DOI 10.1090/S0002-9939-1968-0226590-1
- B. Knaster and M. Reichbach, Notion d’homogénéité et prolongements des homéomorphies, Fund. Math. 40 (1953), 180–193 (French). MR 61817, DOI 10.4064/fm-40-1-180-193 J. von Neumann, Characterisierung des Spektrums eines Integral-operators, Hermann, Paris, 1935.
- Jean Pollard, On extending homeomorphisms on zero-dimensional spaces, Fund. Math. 67 (1970), 39–48. MR 270348, DOI 10.4064/fm-67-1-39-48 W. Sierpiński, Sur une propriété topologique des ensembles denombrables denses en soi, Fund. Math. 1(1920), 11-16.
- James A. Yorke, Permutations and two sequences with the same cluster set, Proc. Amer. Math. Soc. 20 (1969), 606. MR 235516, DOI 10.1090/S0002-9939-1969-0235516-7
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 264 (1981), 205-215
- MSC: Primary 54F50; Secondary 54D99
- DOI: https://doi.org/10.1090/S0002-9947-1981-0597877-9
- MathSciNet review: 597877