## Real submanifolds of codimension two in complex manifolds

HTML articles powered by AMS MathViewer

- by Hon Fei Lai PDF
- Trans. Amer. Math. Soc.
**264**(1981), 331-352 Request permission

## Abstract:

The equivalence problem for a real submanifold $M$ of dimension at least eight and codimension two in a complex manifold is solved under a certain nondegeneracy condition on the Levi form. If the Levi forms at all points of $M$ are equivalent, a normalized Cartan connection can be defined on a certain principal bundle over $M$. The group of this bundle can be described by means of the osculating quartic of $M$ or the prolongation of the graded Lie algebra of type ${\mathfrak {g}_2} \oplus {\mathfrak {g}_1}$ defined by the Levi form.## References

- D. Burns Jr. and S. Shnider,
*Pseudoconformal geometry of hypersurfaces in $C^{n}+^{1}$*, Proc. Nat. Acad. Sci. U.S.A.**72**(1975), 2433–2436. MR**382727**, DOI 10.1073/pnas.72.6.2433 - S. S. Chern and J. K. Moser,
*Real hypersurfaces in complex manifolds*, Acta Math.**133**(1974), 219–271. MR**425155**, DOI 10.1007/BF02392146 - Robert Hermann,
*Convexity and pseudoconvexity for complex manifolds*, J. Math. Mech.**13**(1964), 667–672. MR**0167995** - Shôshichi Kobayashi,
*On connections of Cartan*, Canadian J. Math.**8**(1956), 145–156. MR**77978**, DOI 10.4153/CJM-1956-018-8 - Hon Fei Lai,
*Characteristic classes of real manifolds immersed in complex manifolds*, Trans. Amer. Math. Soc.**172**(1972), 1–33. MR**314066**, DOI 10.1090/S0002-9947-1972-0314066-8 - Noboru Tanaka,
*On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables*, J. Math. Soc. Japan**14**(1962), 397–429. MR**145555**, DOI 10.2969/jmsj/01440397 - Noboru Tanaka,
*On generalized graded Lie algebras and geometric structures. I*, J. Math. Soc. Japan**19**(1967), 215–254. MR**221418**, DOI 10.2969/jmsj/01920215 - Noboru Tanaka,
*On differential systems, graded Lie algebras and pseudogroups*, J. Math. Kyoto Univ.**10**(1970), 1–82. MR**266258**, DOI 10.1215/kjm/1250523814

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**264**(1981), 331-352 - MSC: Primary 53B35
- DOI: https://doi.org/10.1090/S0002-9947-1981-0603767-5
- MathSciNet review: 603767