The $\aleph _{2}$-Souslin hypothesis
HTML articles powered by AMS MathViewer
- by Richard Laver and Saharon Shelah
- Trans. Amer. Math. Soc. 264 (1981), 411-417
- DOI: https://doi.org/10.1090/S0002-9947-1981-0603771-7
- PDF | Request permission
Abstract:
We prove the consistency with $CH$ that there are no ${\aleph _2}$-Souslin trees.References
- J. E. Baumgartner, Ineffability properties of cardinals. I, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 109–130. MR 0384553
- J. Baumgartner, J. Malitz, and W. Reinhardt, Embedding trees in the rationals, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1748–1753. MR 314621, DOI 10.1073/pnas.67.4.1748 K. Devlin, handwritten notes.
- John Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic 41 (1976), no. 3, 663–671. MR 485361, DOI 10.2307/2272043
- R. Björn Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308; erratum, ibid. 4 (1972), 443. With a section by Jack Silver. MR 309729, DOI 10.1016/0003-4843(72)90001-0
- William Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73), 21–46. MR 313057, DOI 10.1016/0003-4843(72)90017-4
- S. Shelah, A weak generalization of MA to higher cardinals, Israel J. Math. 30 (1978), no. 4, 297–306. MR 505492, DOI 10.1007/BF02761994
- R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Ann. of Math. (2) 94 (1971), 201–245. MR 294139, DOI 10.2307/1970860 F. Tall, Some applications of a generalized Martin’s axiom.
- Azriel Lévy, The sizes of the indescribable cardinals, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 205–218. MR 0281606
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 264 (1981), 411-417
- MSC: Primary 03E35
- DOI: https://doi.org/10.1090/S0002-9947-1981-0603771-7
- MathSciNet review: 603771