GENERALIZED 3-MANIFOLDS WHOSE NONMANIFOLD SET
HAS NEIGHBORHOODS BOUNDED BY TORI

BY
MATTHEW G. BRIN

ABSTRACT. We show that all compact, ANR, generalized 3-manifolds whose
nonmanifold set is 0-dimensional and has a neighborhood system bounded by tori
are cell-like images of compact 3-manifolds if and only if the Poincaré conjecture is
true. We also discuss to what extent the assumption of the Poincaré conjecture can
be replaced by other hypotheses.

1. Introduction. In the search for a characterization of topological manifolds, the
following arises.

Question 1. Is every ANR, generalized n-manifold (n finite) the cell-like image of a
topological n-manifold?

Many results exist for n > 5. In this paper we give a partial result for n = 3. Our
result also gives a sufficient condition for an open 3-manifold to embed in a
compact 3-manifold.

Since we restrict our discussion to ANR's (Absolute Neighborhood Retracts), we
incorporate this into the following definition. A generalized n-manifold M is an
n-dimensional retract of an open set of some finite dimensional Euclidean space
E^n, with the following local homology property at every point x in M:

$$H_*(M, M - \{x\}) \cong H_*(E^n, E^n - \{0\}).$$

The set of generalized n-manifolds properly contains the set of topological n-man-
ifolds. Generalized manifolds arise as factors and cell-like images of topological
manifolds. It is not known if all generalized manifolds are such.

A continuum X in an ANR is cell-like if it contracts in any neighborhood of
itself. A map from an ANR onto a separable metric space is cell-like if the inverse
image of every point is cell-like.

Most recent results concerning Question 1 depend on the size of the nonmanifold
set, the set of points each with no neighborhood homeomorphic to E^n. In [7] it is
proven that every generalized n-manifold, n > 5, whose nonmanifold set has
dimension less than \((n - 1)/2\) is the cell-like image of an n-manifold. A complete
affirmative answer to Question 1 for n > 5 has been announced in [18].

Recent survey articles giving more information about the above topics (in
various combinations) are [6], [13] and [19]. For more information about ANR's see
[4].

Received by the editors March 27, 1979 and, in revised form, April 14, 1980.

© 1981 American Mathematical Society
0002-9947/81/0000-0167/$05.25
McMillan has observed that for compact spaces, if \(n = 3 \) and the nonmanifold set is 0-dimensional, then Question 1 is equivalent to:

Question 2. If \(X \) is a compact generalized 3-manifold with 0-dimensional nonmanifold set, can the complement \(M \) of the nonmanifold set be embedded in a compact 3-manifold \(\overline{M} \)?

Not every open \(n \)-manifold embeds in a compact \(n \)-manifold. In fact, there are open \(n \)-manifolds that are algebraically very simple (e.g., contractible) that embed in no compact \(n \)-manifold. In [9, §5] it is shown that the contractible 3-manifolds of [10] and [14] embed in no compact 3-manifold. Higher dimensional examples are found in [20].

To see the equivalence of Questions 1 and 2, we note that if such an embedding does exist, then a different \(\overline{M} \) and embedding can be found so that the complement of \(M \) in \(\overline{M} \) is an intersection of handlebodies [5]. We can map \(\overline{M} \) to \(X \) using the identity on \(M \) and mapping each component of \(\overline{M} - M \) to the appropriate point of \(X - M \). By [16, Theorem 3], each component of \(\overline{M} - M \) will be a 1-UV intersection of handlebodies and hence cell-like. (See below for a definition of 1-UV.)

If \(X \) is a cell-like image under a map \(f \) of a compact 3-manifold \(\overline{M} \), then for each \(x \) in the nonmanifold set of \(X \), there is an open neighborhood \(U \) of \(f^{-1}(x) \) such that \(U - f^{-1}(x) \) embeds in \(E^3 \) [11]. By [15] the restriction of \(f \) to \(U - f^{-1}(x) \) is cellular and by [1] is approximately a homeomorphism. Thus, a closed subset of \(M \) together with a neighborhood of the inverse image of the nonmanifold set can be pieced together to get the desired \(\overline{M} \). Some of these arguments require orientability near the nonmanifold set. This we have by the local homology properties of generalized manifolds.

Using the above observation we are able to prove the following.

Theorem 1. Let \(\mathcal{M} \) be the set of compact generalized 3-manifolds satisfying
(i) the nonmanifold set is 0-dimensional, and
(ii) every open neighborhood of the nonmanifold set contains a closed neighborhood of the nonmanifold set each component of which has connected torus boundary.

Then every \(M \) in \(\mathcal{M} \) is the cell-like image of a compact 3-manifold if and only if the Poincaré conjecture is true.

Since property (ii) pervades this paper, we give it a name, saying that a space with this property has neighborhoods bounded by tori. A topological manifold has neighborhoods bounded by spheres. A result corresponding to Theorem 1 for spaces with neighborhoods bounded by spheres is found in [8]. In this case the conclusion is that every \(M \) in \(\mathcal{M} \) is a manifold if and only if the Poincaré conjecture is true.

Theorem 1 follows directly from Theorem 2, which is stated and proved in the next section. Theorem 2 does not use the full hypothesis of Theorem 1. It is not known if this is a strict weakening of the hypotheses. Theorem 2 is stated as a criterion for embedding an open 3-manifold in a compact 3-manifold (compare with [23]).

The fact that, when \(n = 3 \), the Poincaré conjecture gets in the way of an affirmative answer to Question 1 is well known. The one point compactification of
the locally finite connected sum of a countably infinite number of fake spheres is a generalized 3-manifold, but the manifold set (the complement of the nonmanifold set) embeds in no compact 3-manifold. In this example, the manifold set is not irreducible. In §3 we construct an example showing that the Poincaré conjecture is not avoided by assuming that the manifold set is irreducible.

Assumptions stronger than irreducibility do bear fruit. McMillan has shown, by methods different from ours, that if the manifold set M is the ascending union of knot spaces (complements in E^3 of solid tori), then M in fact embeds in S^3. Our methods reach the same conclusion under the stronger assumption that M is an ascending union of solid tori. This last is stated as an addendum to Theorem 2.

The example referred to above and the example in §3 are both one-point compactifications of open 3-manifolds. In general, such objects are not very friendly. We point out that if M is the one-point compactification of the connected sum of a countably infinite number of homology spheres, then $H_1(M)$ is uncountably generated.

We will finish this section by setting down some definitions and conventions. In this paper, all manifolds and maps of manifolds will be in the PL category. An open manifold is noncompact and without boundary; a closed manifold is compact and without boundary. A 3-manifold is prime if every separating 2-sphere bounds a 3-cell; it is irreducible if every 2-sphere bounds a 3-cell. We will use the symbols I^n, S^n and E^n to represent the n-dimensional ball, sphere and Euclidean space respectively. A torus (annulus, solid torus) is a space homeomorphic to $S^1 \times S^1$ ($I \times S^1$, $I^2 \times S^1$). We will use Bd, Cl and Int to denote boundary, closure and interior.

In a solid torus, $I^2 \times S^1$, a curve embedded in the boundary in the same way as $\text{Bd} I^2 \times \{p\}$ will be called a meridian, and a disk embedded in the solid torus in the same way as $I^2 \times \{p\}$ will be called a meridional disk. If M is an n-manifold with boundary, we say that we are adding a k-handle to M by attaching the n-cell $I^{n-k} \times I^k$ to $\text{Bd} M$ by a homeomorphism defined on $I^{n-k} \times \text{Bd} I^k$. A k-cell intersecting a k-handle is consistent with the product structure if it intersects in the set $\{p\} \times I^k$ for some p in $\text{Int} I^{n-k}$.

We use $\text{Link}(J, K)$ to denote the linking number of two disjoint loops J and K. See [2, pp. 480–482] for a geometric description of linking over Z_2. The discussion there works perfectly well over Z.

For basic facts about incompressible surfaces, see [22, §1.1]. Generally, the operation of compression, removing an essential annulus from the interior of a surface and sewing on a pair of disks to the newly created boundary components, is done on a surface embedded in a 3-manifold. In this paper, the term will also refer to performing the same operation on the domain of a singular map from a 2-manifold into a 3-manifold. Throughout this paper, the word surface should be taken to mean a singular map from a 2-manifold unless it is specified as nonsingular.

Theorem 2 refers to the Freudenthal compactification (also called the Ideal compactification). This can be defined as follows. Let X be σ-compact and let $K_1 \subset K_2 \subset K_3 \subset \ldots$ be a sequence of compact sets so that $X = \bigcup K_i$. An end of
X is a sequence $E = \{ U_1 \supset U_2 \supset \ldots \}$ of nonempty, connected complementary domains of the sets K_i. The Freudenthal compactification of X is X with all “points” E as above, a neighborhood base for E being $\{ U_1, U_2, \ldots \}$. Note that if M is a compact manifold and C is a closed, nonseparating, 0-dimensional set in M, then the Freudenthal compactification of $M - C$ is M.

We list some local properties. A space is locally contractible at p if every open set U containing p contains an open set V containing p so that V contracts in U. A space is k-LC at p if every open U about p contains an open V about p so that every map of S^k into V extends to a map of I^{k+1} into U. A set X in a space Y is k-UV if every open U containing X contains an open V containing X so that every map of S^k into V extends to a map of I^{k+1} into U. An open manifold M will be said to be 1-acyclic at infinity if every compact set K in M is contained in a compact set K' so that every 1-cycle in $M - K'$ bounds a 2-chain in $M - K$. Lastly, we will say that a set X is simply connected mod $A \subseteq X$ if every loop in X is homotopic to a product of conjugates in X of loops in A.

2. An embedding criterion.

Theorem 2. Let \mathcal{K} be the class of all connected, open 3-manifolds M without boundary satisfying

(i) $M = \bigcup \lim_{i \to \infty} K_i$ where each K_i is a connected, compact 3-manifold and $K_i \subset \text{Int } K_{i+1}$.

(ii) $\text{Bd } K_i$ is a union of tori, for all i.

(iii) Each component of $\text{Bd } K_i$ separates M.

(iv) M is 1-acyclic at infinity and

(v) \hat{M}, the Freudenthal compactification of M, is 1-LC.

Then every M in \mathcal{K} embeds in a compact 3-manifold if and only if the Poincaré conjecture is true.

Addendum 2.1. If, in Theorem 2, hypothesis (ii) is replaced by (ii') $K_i \cong I^2 \times S^1$, then every M in \mathcal{K} embeds in S^3 and the assumption of the Poincaré conjecture is unnecessary.

The two statements above will be proven together. The next lemma shows that property (iv) arises fairly naturally. The proof that follows, due to McMillan, is shorter than our original proof.

Lemma 2.2. If M is a connected open 3-manifold and $H_1(M) = 0$, then M is 1-acyclic at infinity.

Proof. It suffices to show that every compact submanifold K of M is contained in a compact set K' of M so that loops in $M - K'$ bound in $M - K$. Since K is compact, it has a finite number of boundary components. Each boundary component F contains a bouquet of a finite number of loops L_F so that $F - L_F$ is an open disk. Since $H_1(M) = 0$, all the loops in all of the L_F bound a finite number of surfaces in M whose union S is compact. Let K' be the compact set $K \cup S$. Let J
be a loop in \(M - (K \cup S) \). Since \(H_1(M) = 0 \), linking numbers for pairs of loops are well defined and symmetric. Since \(J \) misses \(S \), the linking number of \(J \) and any loop in \(L_{\ell} \) is zero. Thus, \(J \) bounds a surface disjoint from the \(L_{\ell} \). If this surface hits \(K \) at all, it enters through open disks in \(\text{Bd} \ K \). This surface can then be cut off on \(\text{Bd} \ K \).

Proof of Theorem 2 and Addendum 2.1. The necessity of the Poincaré conjecture is covered by the example of §3.

We establish some notation. Let \(N_i = M - \text{Int} \ K_i \) and \(\hat{N}_i = M - \text{Int} \ K_i \). The \(\hat{N}_i \) are the neighborhoods of the nonmanifold set with tori boundary referred to in Theorem 1. Note that hypotheses (ii) and (iii) of Theorem 2 require that each component of these neighborhoods have connected boundary.

We now construct the embedding of \(M \) in a compact manifold \(\hat{M} \). We first wish to enlarge the “layers” between the successive \(K_i \) to obtain various properties. By choosing a subsequence of the \(K_i \) and renumbering from 1, the 1-LC property lets us assume that all curves in \(\hat{N}_i \) shrink in \(\hat{N}_{i-1} \), \(i > 2 \). We choose yet a further subsequence.

The boundary of \(K_3 \) is compact, so \(H_1(\text{Bd} \ K_3) \) is generated by a finite number of 1-cycles. These bound a finite number of surfaces in \(N_2 \) which are contained in some \(K_j \). Similarly surfaces bounded by generators of \(H_1(\text{Bd} \ K_j) \) in \(N_j \) lie in some \(K_j \). Continuing this way we get a subsequence \(K_2, K_3, K_4, K_5, \ldots \) which, if renumbered from 1, has the property that (i) loops in \(N_i \) bound in \(M \) and (ii) for every even number \(i \), loops in \(\text{Bd} \ K_i \) bound surfaces in \(K_{i+1} - K_{i-1} \). We will work with this sequence through the remainder of the proof.

The embedding of \(M \) in \(\hat{M} \) will proceed by successively embedding the layers between the odd numbered \(K_i \). To describe these embeddings, we need certain canonical curves on the components of \(\text{Bd} \ K_i \) for all odd \(i > 3 \). To keep the notation simple, we will describe these curves for \(i = 3 \), the process for obtaining them for higher indexes being identical.

Let \(Y = \text{Cl}(K_5 - K_1) \). It is most probable that \(Y \) is not connected. We show that \(Y \) embeds in a 3-manifold \(Z \) (not necessarily connected) with \(H_1(Z) = 0 \). We will use [21, Theorem 3.1] which says this can be done if \(Y \) is orientable, \(H_1(Y) \) is free and \(\iota_*: H_1(\text{Bd} \ Y) \to H_1(Y) \) is onto. Since loops in \(N_1 \) bound in \(M \) we get immediately that \(Y \) is orientable and that \(\iota_*: H_1(\text{Bd} \ Y) \to H_1(Y) \) is onto. From the long exact sequence for \((Y, \text{Bd} \ Y) \) with reduced homology, \(H_1(Y, \text{Bd} \ Y) \cong \tilde{H}_0(\text{Bd} \ Y) \) which is free. By Lefschetz duality, \(H^2(Y) \) is free, and by the Universal Coefficient Theorem \(H_1(Y) \) is free.

We will regard \(Y \) as a submanifold of both \(M \) and \(Z \). We will refer to \(Z \) several times throughout the rest of the proof. Let \(G \) be a component of \(\text{Bd} \ K_3 \). Since \(H_1(Z) = 0 \), \(G \) separates \(Z \). By hypothesis, \(K_3 \) is connected and \(G \) separates \(M \), so that if \(U_G \) and \(V_G \) are the complementary domains of \(G \) in \(Z \), one of them, say \(V_G \), does not intersect \(K_3 - K_1 \). By [21, Theorem 2.1], there is a pair of disjoint simple closed curves \(A_G \) and \(B_G \) on \(G \) that intersect in a single point, transversely, and so that \(B_G \) is null homologous in \(\text{Cl}(V_G) \) and \(A_G \) is null homologous in \(\text{Cl}(U_G) \). We can find such curves on all components of \(\text{Bd} \ K_3 \).
The theorem will follow from:

Claim 1. Embed \(K_{2i+1} \) in a compact manifold \(M \) by attaching solid tori to the components \(G_j \) of \(\text{Bd} K_{2i+1} \) so that the curves \(B_{G_j} \) are meridians for the solid tori. Then \(K_{2i+3} \) can be embedded in \(M \) so that \(\text{Cl}(M - K_{2i+3}) \) is a union of solid tori whose meridians are the curves \(B_G \) for components of \(\text{Bd} K_{2i+3} \) and so that the two embeddings agree on \(K_{2i-1} \).

Again, to keep the notation simple, we will show how an embedding for \(K_3 \) implies an embedding of \(K_5 \) so that the two embeddings agree on \(K_1 \).

First some homology preliminaries. Let \(G \) be a component of \(\text{Bd} K_3 \), \(G \) separates \(Y \) into two sets, \(Q = V_G \cap Y \) and \(R = U_G \cap Y \). We know \(B_G \) bounds a singular surface in \(V_G \). This surface can be “cut off” on \(\text{Bd} K_4 \). Since curves on \(\text{Bd} K_4 \) are null homologous in \(K_5 - K_3 \), we can find a surface bounded by \(B_G \) in \(Q \). Similarly, \(A_G \) bounds a surface in \(U_G \). This surface may hit both \(\text{Bd} K_2 \) and \(\text{Bd} K_4 \). In the same manner, we get that \(A_G \) bounds a surface in \(R \). Note that while we have shown that \(B_G \) is null homologous in \(K_5 - K_3 \), we have not shown that \(A_G \) is null homologous in \(K_3 - K_1 \). We only know that \(A_G \) is null homologous in the complementary domain of \(G \) in \(Y \) that intersects \(K_3 - K_1 \).

This operation of “cutting off” a surface on an even numbered \(\text{Bd} K_i \) and redefining the surface in a more restricted area will be done several times during the proof.

Note that as defined above, \(Q \) is a component of \(K_5 - K_3 \). We now state:

Claim 2. Let \(Q \) be a component of \(K_{2i+3} - K_{2i+1} \). Let \(\{G_1, \ldots, G_n\} \) be the components of \(\text{Bd} Q \) that are in \(\text{Bd} K_{2i+3} \). Then each \(A_{G_i} \) is homotopic in \(Q \) to a product of the curves \(\{B_{G_j}\} \).

We will finish the proof of Claim 1 before giving the proof of Claim 2. Let \(K_3 \) be embedded in \(M \) as given in the statement of Claim 1. Let \(Q \) be a component of \(\text{Cl}(K_5 - K_3) \). One boundary component \(F_Q \) of \(Q \) comes from \(\text{Bd} K_3 \). The other boundary components \(\{G_1, \ldots, G_n\} \) of \(Q \) come from \(\text{Bd} K_5 \). Form the space \(\tilde{Q} \) by sewing solid tori to the \(\{G_j\} \) so that meridians are sewn to the curves \(\{B_{G_j}\} \). The proof would be finished if \(\tilde{Q} \) were a solid torus with meridian \(B_{F_Q} \). Such need not be the case however. Note that each component \(F \) of \(\text{Bd} K_3 \) has a component of \(K_5 - K_3 \) as one of its complementary domains. We shall call its closure \(Q_F \).

Each \(Q \) can be regarded as a submanifold of \(\tilde{K}_5 \) obtained by sewing solid tori to all components of \(\text{Bd} K_5 \) so that meridians are sewn to all the \(B \) curves. Since every loop in \(\tilde{N}_3 \) bounds a singular disk in \(\tilde{N}_1 \), Claim 2 says that every loop in \(\tilde{K}_5 - K_3 \) bounds a singular disk in \(\tilde{K}_5 - K_1 \). Thus, all the components of \(\text{Bd} K_3 \) compress to embedded 2-spheres in \(\tilde{K}_5 - K_1 \).

Let \(D_1, \ldots, D_m \) be a sequence of embedded disks in \(\tilde{K}_5 - K_1 \) along which all the components of \(\text{Bd} K_3 \) compress. The compressions are done one at a time, starting with \(D_1 \). We can choose each \(\text{Int} D_i \) disjoint from all components of \(\text{Bd} K_3 \) as they exist after the first \(i - 1 \) compressions. Since each component of \(\text{Bd} K_3 \) is a torus, there are as many disks \(D_i \) as components of \(\text{Bd} K_3 \). We claim that each \(\text{Bd} D_i \) can be chosen either an \(A \) or \(B \) curve for the component of \(\text{Bd} K_3 \) that \(D_i \) compresses.
Let \(F \) be a component of \(\partial K_3 \). If \(F \) compresses along a \(D_i \) in \(\overline{Q}_F \), then by cutting off \(D_i \) on \(\partial K_3 \) we get \(\partial D_i \) zero homologous in \(Q_F \). Thus, \(\partial D_i \) is homotopic to \(B_F \) on \(F \) and \(F \) compresses along \(B_F \). If \(D_i \) is not contained in \(\overline{Q}_F \), it does not hit \(Q_F \) and can be cut off on \(\partial K_2 \) and \(\partial K_4 \) ultimately showing, for reasons of homology, that \(\partial D_i \) is homotopic to \(A_F \) on \(F \).

Each time a component \(F \) is compressed along a disk in \(\overline{Q}_F \), a 1-handle is removed from \(\overline{Q}_F \) and a 2-handle is added to its complement. Other disks \(D_i \) may run through this 2-handle. We can require that the intersection is consistent with the product structure of the 2-handle.

We now switch our attention to the uncompressed components of \(\partial K_3 \) as they are embedded in \(M \). We can compress these components along a sequence of disks \(E_1, \ldots, E_m \) that correspond to the disks \(D_1, \ldots, D_m \) in the sense that, for each \(i \), \(E_i \cap K_3 = D_i \cap K_3 \). This can be done, if \(D_i \) lies in some \(\overline{Q} \), by letting \(E_i \) be a meridian of the solid torus bounded, in \(M - K_3 \), by the component of \(\partial K_3 \) containing \(\partial D_i \). Otherwise, define \(E_i \cap K_3 \) to be \(D_i \cap K_3 \) and fill in the holes of \(E_i \) using meridians of solid tori whose boundaries were compressed by earlier disks \(E_j \) in the sequence.

Let \(\overline{K}_3^* \) denote \(K_3 \) after the compressions along the disks \(D_i \). The space \(K_3^* \) is obtained from \(K_3 \) by removing 1-handles and adding 2-handles. Let \(K_3^{**} \) denote \(K_3 \) after the compressions along the disks \(E_i \). The spaces \(K_3^* \) and \(K_3^{**} \) are naturally homeomorphic. Each of the complementary domains of \(K_3^{**} \) in \(M \) is either a solid torus minus a 1-handle, thus a 3-cell, or a solid torus plus a 2-handle sewn along some \(A_F \). But \(A_F \) and \(B_F \) intersect transversely in one point for each \(F \). Thus, all the complementary domains are 3-cells. The complementary domains \(\overline{Q}_* \) of \(K_3^* \) in \(\overline{K}_3 \) are bounded by one 2-sphere each, and all loops in \(\overline{Q}_* \) shrink in \(\overline{K}_3 \). Thus, each \(\overline{Q}_* \) is simply connected and by hypothesis a 3-cell. Claim 1 is completed by mapping the \(\overline{Q}_* \) to the complementary domains of \(K_3^{**} \) in \(\overline{M} \) and reversing the steps of the compression. Since all of the disks \(D_i \) and \(E_i \) missed \(K_1 \), the new embedding agrees with the old on \(K_1 \).

Under the hypotheses of Addendum 2.1, we can say that each \(A_F \) is a meridian of a solid torus. Also, using an argument of [23], we can say that if an infinite number of \(\partial K_i \) compress along \(A_F \) in \(K_i - K_{i-2} \), \(i \) odd, then \(M \) is a union of 3-cells. Otherwise, after a certain point, all of the compressing referred to above takes place in the complementary domains \(\overline{Q}_* \) which must then be solid tori. Thus, \(\overline{M} \) and each \(\overline{K}_i \) is the union of two solid tori with transverse meridians and is \(S^3 \).

Proof of Claim 2. The following proof works because \(\pi_1 \) and \(H_1 \) of a torus are naturally isomorphic. Before we start the proof we mention one item of background. In general, if \(X \) and \(Y \) are 3-manifolds joined along boundary \(F \), and \(L \) is a loop in \(X \) which bounds a disk \(D \) in \(X \cup Y \), then little can be said about the intersections of \(D \) and \(F \). In our present setting a great deal can be said. Our first proof was a lengthy sequence of cuts and homotopies that simplified \(D \cap F \). What came out were facts about certain subgroups that were true without referring to a fixed \(D \). The ghost of \(D \) remains and bits and pieces can be found in what follows. Again, to simplify the notation, we show that the \(A \) curves in \(\partial K_3 \) are homotopic in \(K_3 - K_3 \) to products of conjugates of the \(B \) curves in \(\partial K_3 \).
Referring again to the technique of cutting surfaces off on the even numbered
Bd \(K_5 \), we point out that if any loop in Bd \(K_5 \) bounds a disk in \(K_5 - K_3 \), it must be
a multiple of some \(A \) curve, and if any loop in Bd \(K_5 \) bounds a disk in \(\tilde{N}_5 \), it must
be a multiple of a \(B \) curve.

We will need some basic facts about the homological behavior of the \(A \) and \(B \)
curves. Assume a multiple of an \(A \) curve on Bd \(K_5 \) is zero homologous in \(\tilde{N}_5 \). The
surface it bounds can be cut off on Bd \(K_5 \) and we would have a multiple of \(A \)
bounding in \(K_7 - K_5 \). We know the \(B \) curve that is transverse to \(A \) bounds, for the
same reason, in \(K_7 - K_5 \). But two curves on the boundary of a 3-manifold with
nonzero intersection number cannot both be torsion in \(H_1 \) of the 3-manifold. Thus,
no multiple of \(A \) bounds in \(\tilde{N}_5 \).

We now wish to show that for each component \(G \) of Bd \(K_5 \), \(A_G \) is homologous in
\(K_5 - K_3 \) to combinations of all the \(B \) curves except \(B_G \) in Bd \(K_5 \). We will also show
that the \(B \) curves in Bd \(K_5 \) are independent in \(H_1(K_5 - K_3) \). The second fact
follows from the first since if there were a dependence relation, the free rank of the
image of \(\iota_*: H_1(\text{Bd} \ K_5) \to H_1(K_5) \) would be less than the genus of Bd \(K_5 \). This
would violate a standard consequence of duality in 3-manifolds. To show the first
statement, we again use the manifold \(Z \) with \(H_1(Z) = 0 \) in which \(K_5 - K_1 \) embeds.
Form a manifold \(\tilde{Z} \) by removing, for each component \(G \) of Bd \(K_5 \), the complemen-
tary domain \(V_G \) of \(G \) in \(Z \) that misses \(K_5 \), and replacing it with a solid torus \(H_G \) so
that a meridian of \(H_G \) is sewn to \(B_G \). According to [21, Theorem 2.1], each \(B_G \)
generates \(H_1(U_G) \) where \(U_G \) is the complementary domain of \(G \) in \(Z \) intersecting
\(K_5 \). Thus, by replacing the domains \(V_G \) one by one, we see that \(H_1(\tilde{Z}) = 0 \). If we
let \(\tilde{U}_G \) denote the complementary domain of \(G \) in \(\tilde{Z} \) that intersects \(K_5 \), then each
\(A_G \) is zero homologous in \(\tilde{U}_G \). If not, some other curve \(L_G \) is by [21, Theorem 2.1]
since \(H_1(\tilde{Z}) = 0 \). The surface bounded by \(L_G \) can be adjusted to hit all the solid
tori \(H_G \) in meridinal disks. The surface can also be cut off on Bd \(K_4 \). Note that the
only intersection of this surface with \(G \) is \(L_G \). Thus, \(L_G \) is homologous in \(K_5 - K_3 \)
to a combination of \(B \) curves in Bd \(K_5 \) other than \(B_G \). But, each \(B_G \) is zero
homologous in \(V_G \) in \(Z \). Thus, each \(L_G \) is zero homologous in \(U_G \) in \(Z \) and must be
homotopic to \(A_G \) on \(G \).

We now derive some properties of \(H_1(\text{Bd} \ K_5) \) that follow from the fact that \(\hat{M} \) is
1-LC. Let \(H \) denote \(H_1(\text{Bd} \ K_5) \). There is a natural isomorphism between \(H \) and the
direct sum of the fundamental groups of the components of Bd \(K_5 \). We will define
a sequence of subgroups of \(H \), \(0 < S_1 \subset S_2 \subset \cdots \subset S_n = H \). We let \(S_1 \) be the
subgroup of \(H \) generated by all loops in Bd \(K_5 \) that are null homotopic in \(\tilde{N}_5 \). Let
\(S_2 \) be the subgroup generated by loops in Bd \(K_5 \) that are homotopic in \(K_5 - K_3 \)
to products of conjugates of loops in \(S_1 \). The group \(S_3 \) will be loops homotopic in \(\tilde{N}_5 \)
to products of conjugates of loops in \(S_2 \). We continue alternating in this fashion.
Even numbered groups are loops that are null homotopic in \(K_5 - K_3 \) mod loops in
lower groups and odd numbered groups are defined similarly via \(\tilde{N}_5 \). Since \(H \) is
finitely generated and since every loop in Bd \(K_5 \) bounds a disk in \(\tilde{N}_3 \), there is a
finite \(n \) such that \(S_n = H \). Choose \(n \) to be the smallest with this property. For
\(1 < i < j < n \) we cannot have \(S_i = S_j \).
We now analyze the structure of the groups S_i. We can represent H as a direct sum $H_A \oplus H_B$ where H_A is the subgroup of H generated by A curves in ∂K_5 and H_B is the subgroup generated by the B curves in ∂K_5. By the homology properties of the A and B curves, S_i is a subgroup of H_B; call it B_i.

We claim there are sequences of subgroups $B_1 \subset B_3 \subset B_5 \subset \cdots \subset H_B$ and $A_2 \subset A_4 \subset A_6 \subset \cdots \subset H_A$ so that for odd i, $S_i = B_i \oplus A_{i-1}$ and for even i, $S_i = A_i \oplus B_{i-1}$. We further claim that for even i, each loop in A_i is null homotopic in $K_5 - K_3$ mod loops in B_{i-1}. This last statement completes the proof of Claim 2. It will also be true that for odd i, each loop in B_i is null homotopic in \hat{N}_5 mod loops in A_{i-1}.

The proof of these claims proceeds by induction. We will show the inductive step for even i. The inductive step for odd i is similar and simpler since each component of \hat{N}_5 has connected boundary.

We consider S_{2k}. Let L be a loop in S_{2k}. L lies on some component G of ∂K_5 and can be represented as $aA_G + bB_G$. We claim that bB_G is in B_{2k-1}. Since L is in S_{2k}, there is a genus zero surface C_1 in $K_5 - K_3$, one of whose boundary components is L and which has all other boundary components in $S_{2k-1} = B_{2k-1} \oplus A_{2k-2}$. By the inductive hypotheses, each loop in A_{2k-2} bounds a genus zero surface in $K_5 - K_3$ together with loops in $B_{2k-3} \subset B_{2k-1}$. Thus, C_1 can be replaced by a genus zero surface C_2 in $K_5 - K_3$ with L as one boundary component and loops in B_{2k-1} for all other boundary components. However, aA_G together with multiples of B curves from components of ∂K_5 other than G bounded a 2-chain C_3 in $K_5 - K_3$. Thus, $C_2 - C_3$ is a 2-chain in $K_5 - K_3$ whose boundary lies in H_B. But, the B curves are independent in $H_1(K_5 - K_3)$, so the coefficient of each B in the boundary of $C_2 - C_3$ is zero. But $\text{Bd}(C_2 - C_3) \cap G = (\text{Bd} C_2 \cap G) - aA_G$ since C_3 hits G only in aA_G. The boundary of C_2 on G is $aA_G + bB_G + \text{elements in } B_{2k-1}$. So $\text{Bd}(C_2 - C_3) \cap G = bB_G + \text{elements in } B_{2k-1}$. Thus, bB_G is in B_{2k-1}. Now the genus zero surface C_2 shows that aA_G is null homotopic in $K_5 - K_3$ mod loops in B_{2k-1} and the proof of Claim 2 is complete.

3. **If the Poincaré conjecture is false.** We start with a description of the example. Let P be a prime homotopy 3-sphere that is not homeomorphic to S^3. Let C be a 3-cell in P containing a spanning arc A and a simple, closed curve J_1 arranged as in Figure 1. J_1 bounds an embedded disk in C but not in $C - A$.

![Figure 1](image-url)
Let J_2 be a simple closed curve in P contained in no 3-cell (see [3]) so that $J_2 \cap C = A$. Let T_i be a solid torus regular neighborhood of J_i, $i = 1, 2$. Let $F = \text{Bd } T_1$ and $G = \text{Bd } T_2$.

Let $Q = \text{Cl}(P - T_1 - T_2)$. The boundary of Q is $F \cup G$.

We have $\pi_1(P - J_1) = \pi_1(P - C) \ast \pi_1(C - J_1) = \{1\} \ast Z = Z$. Since $\text{Link}(J_1, J_2) = 0$, the curve J_2 must be homotopically trivial in $(P - J_1)$. There is, therefore, a simple closed curve Y in G that bounds a surface in Q. Y is parallel to J_2 in T_2 and transverse to a meridian Z of T_2 (see Figure 2).

The curve J_1 bounds a surface in $P - T_2$, so there is a curve X in F, parallel to J_1 in T_1, that bounds a surface in Q. X is transverse to a meridian W of T_1. The curve X and two parallel copies of Z bound an embedded disk with two holes in $C - \text{Int } T_2$ (see Figure 2).

![Figure 2]

Let Q_1, Q_2, \ldots be disjoint spaces homeomorphic to Q with W_i, X_i, Y_i, Z_i, F_i and G_i in Q_i corresponding to W, X, Y, Z, F and G in Q respectively. Let $M = T \cup Q_1 \cup Q_2 \cup \ldots$ with Q_i sewn to Q_{i+1} by identifying (G_i, Y_i, Z_i) to $(F_{i+1}, W_{i+1}, X_{i+1})$, and with T a solid torus whose boundary is sewn to F_1 so that a meridian is sewn to W_1.

Let \hat{M} be the 1-point compactification of M.

Theorem 3. The space \hat{M} is a compact generalized 3-manifold such that
(i) the nonmanifold set consists of one point with neighborhoods bounded by tori,
(ii) the manifold set is irreducible, and
(iii) the manifold set embeds in no compact 3-manifold.

Proof. First some notation. Let p be the point in $\hat{M} - M$. We will use K_n to denote $T \cup Q_1 \cup \cdots \cup Q_{n-1}$. We will use N_n to denote $\text{Cl}(M - K_n)$ and \tilde{N}_n to denote $\text{Cl}(\hat{M} - K_n)$. Note that Q_n is contained in N_n and \tilde{N}_n but not in K_n. The
The proof is divided into a number of steps. The first few steps, and the bulk of the proof, concern themselves with the local contractibility of \(\hat{M} \). The remaining steps cover the local homology properties. The primary reasons that \(\hat{M} \) is locally contractible seem to be that \(P - J_1 \) has trivial \(\pi_2 \) and that each \(\text{Bd} \, \hat{N}_i \) bounds a finite 3-chain in \(\hat{N}_i \). These combine to give the local 2-connectedness, the major stumbling block.

Step 1, a preliminary, proves item (ii). After that our attention focuses on the point \(p \), the only point in the nonmanifold set.

Step 1. The manifold set is irreducible. We show that \(G \) is incompressible in \(\text{Cl}(P - T_2) \) and \(F \) is incompressible in \(Q \). If \(G \) compresses, it must compress along \(Y \), implying that \(J_2 \) is contained in a 3-cell, contradicting our choice of \(J_2 \). If \(F \) compresses, it must compress along \(X \), implying that \(J_1 \) bounds an embedded disk \(D \) in \(P - J_2 \). If \(L \) is a simple closed curve of \(\text{Bd} \, C \cap D \), then \(L \) does not link \(J_2 \). Thus, one of the disks bounded by \(L \) in \(\text{Bd} \, C \) misses \(J_2 \), and \(D \) can be cut off on \(\text{Bd} \, C \). This implies that \(J_1 \) bounds an embedded disk in \(C - A \), contradicting our choice of \(A \) and \(J_1 \) in \(C \).

Since \(J_2 \) is contained in no 3-cell and since \(P \) is prime, \(T \cup Q_1 \) and all \(Q_i, i > 2 \), are irreducible. Also, \(T \cup Q_1 \) and all \(Q_i, i > 2 \), have incompressible boundary. Thus, every \(K_i \) is irreducible and \(M \) is irreducible.

Step 2. \(\hat{M} \) is 1-LC at \(p \). We observe first that every \(Z_i \) bounds a disk in \(\hat{N}_{i+1} \) since \(Z_i \) is \(X_{i+1} \), and \(X_{i+1} \) and two copies of \(Z_{i+1} \) bound a disk with two holes in \(Q_{i+1} \). The holes can be partly filled in by disks with two holes in \(Q_{i+2} \). Continuing in this way we fill in the disk by mapping a Cantor set to \(p \).

Also note that \(W_i \) (which equals \(Y_{i-1} \)) bounds a disk in \(\hat{N}_{i-1} \). Temporarily regarding \(Q_{i-1} \) as a subset of \(P \) and recalling that \(J_2 \) was homotopic to zero in \(P - J_1 \), we see that \(Y_{i-1} \) with several copies of \(Z_{i-1} \) bounds a disk with holes in \(Q_{i-1} \). These holes can be filled in with disks in \(\hat{N}_i \) as above.

Now any loop in \(Q_i \) will bound a disk with holes together with copies of \(W_i \) and \(Z_i \). Thus, any loop in \(Q_i \) bounds a disk in \(\hat{N}_{i-1} \). What follows is essentially an argument of Kozlowski.

Let \(L \) be a loop in \(\hat{N}_i \). By a small homotopy, put \(L \) in general position with respect to all the \(\text{Bd} \, N_j \). By the previous paragraphs, there is a homotopy, contained in \(\hat{N}_{i-1} \), taking each arc of \(L \cap Q_i \) to an arc in \(\text{Bd} \, N_{i+1} \) keeping the endpoints fixed. Now \(L \) lies in \(\hat{N}_{i+1} \). Similarly a homotopy contained in \(\hat{N}_i \) carries \(L \) into \(\hat{N}_{i+2} \). Continuing, we can put these homotopies together to define a homotopy on \([0, 1]\). Since the homotopies near 1 can be kept arbitrarily close to \(p \), we can extend the homotopy continuously to all of \([0, 1]\) by making the 1 level the constant map to \(p \).

Step 3. For each \(i > 1 \), there is a map \(f_i: T \to \hat{N}_i \), where \(T \) is a solid torus and \(f_i|_{\text{Bd} \, T}: \text{Bd} \, T \to \text{Bd} \, \hat{N}_i \) is a homeomorphism.

This will be needed to show that \(\hat{M} \) is 2-LC at \(p \). Since all the \(\hat{N}_i \) are homeomorphic, we will construct the map \(f_1 \).

Divide \(P \) into the 3-cell \(C \) and its complement \(C' \). The space \(\text{Cl}(C - T_1) \) is homeomorphic to the solid torus \(T \) minus the interior of a 3-cell \(B \) in \(\text{Int} \, T \). There
is a map from the 3-cell B to C' taking the boundary homeomorphically to the boundary. Putting these together gives a map f from T to $\text{Cl}(P - T_i)$ that takes the boundary homeomorphically to the boundary. We can put f in general position with respect to J_2.

The set $f^{-1}(J_2)$ consists of a finite number of disjoint simple closed curves L_1, \ldots, L_n with all but one, say L_1, contained in B. The curve L_1 intersects B in a spanning arc, possible knotted. If $L_1 \cap B$ is replaced by an unknotted spanning arc, creating a curve L_1^*, then the embedding of L_1^* in T is that of the standard Whitehead link (see Figure 3).

![Figure 3](image)

We can adjust f by a homotopy on a small neighborhood of $f^{-1}(J_2)$ so that a neighborhood T_i of L_i is carried homeomorphically onto T_2 and so that $f^{-1}(T_2)$ is a regular neighborhood of $f^{-1}(J_2)$ one of whose components is T_L. The space $T - f^{-1}(T_2)$ is carried by f onto Q_1. We wish to redefine f on $f^{-1}(T_2)$ so the new map takes $f^{-1}(T_2)$ to \hat{N}_2. We will do this first on neighborhoods of L_i for $i > 1$.

Let T_i be the component of $f^{-1}(T_2)$ that contains L_i. Note that f carries $\text{Bd} \ T_i$ into an annulus of G_1, the boundary component that Q_1 shares with Q_2. This annulus is a neighborhood of Z_1 on G_1. We can adjust f by a homotopy so that f carries $\text{Bd} \ T_i$ into Z_1. Since Z_1 bounds a disk in \hat{N}_2, we can extend the map to take T_i to \hat{N}_2 by first extending the map to map T_i into a 2-disk bounded by Z_i by the Tietze extension theorem and then mapping the disk into \hat{N}_2 with boundary Z_1.

This leaves the solid torus neighborhood of L_1. We can fill that in by mapping that solid torus minus a "knotted Whitehead link" into \hat{N}_2 in a manner identical to the above. Continuing this way gives a map defined on all of T except on a certain cell-like continuum. Points close to that continuum are mapped close to p. The
map f_1 is completed by mapping the continuum to p. Note that $f^{-1}(p)$ contains components other than this continuum, namely, simple curves essential in solid tori that are contained in 3-cells in T.

Step 4. \hat{M} is 2-LC at p. Let $f: S^2 \to \hat{N}$ be a singular map of a 2-sphere into \hat{N}. We wish to show that f extends to a map of I^3 into \hat{N}_{-1} where S^2 is Bd I^3. We will do this in pieces.

Put f in general position with respect to the surfaces Bd N_j. Each simple closed curve L of $f^{-1}(\text{Bd } N_j)$, all f_j, bounds an embedded disk D_L in I^3 with $D_L \cap S^2 = L$. Since all the curves L are disjoint, we can choose these disks disjoint (there are a countable number). Fix an L in $f^{-1}(\text{Bd } N_j)$. We wish to extend f to D_L very explicitly. Since Bd N_j is a torus with π_1 generated by W_j and X_j, $f(L)$ is homotopic to a loop L' that follows W_j around n times and then X_j around m times, with x, the point $W_j \cap X_j$, used as a base point. We can homotop f near L so that f takes L to such a loop. Choose two points x_1 and x_2 in $f^{-1}(x)$ so that one complementary domain of x_2 and x_2 in I^3 goes to nW_j and the other to mX_j.

Including x_2, there are $m + n - 1$ points in $f^{-1}(x)$ other than x_1. Join these $m + n - 1$ points to x_1 by arcs in D_L that are disjoint except at x_1 and whose interiors lie in $\text{Int } D_L$. Extend the map f to these arcs by defining it to be the constant map to x on them. The disk D_L has been carved into $m + n$ subdisks. Each of their boundaries maps either to W_j or to X_j. We extend f to these subdisks of D_L exactly as specified in the first two paragraphs of Step 2.

We will now regard f as being defined on S^2 and all the disks D_L. The disks D_L carve I^3 into a countable number of 3-cells with f defined on the boundary of each. Note that f carries each D_L only one neighborhood farther from p than it carries Bd D_L. Thus, for all L, $f^{-1}(\hat{N}^\prime_j)$ contains the boundaries of all but a finite number of these 3-cells. We will be done if we can extend f to each of these 3-cells so that f does not carry the interior much farther from p than it carries its boundary.

We now, therefore, reduce the problem and regard I^3 as one of the subcells whose boundary consists of a connected surface S'_0 in the original 2-sphere plus a collection of disks D_L. The map f takes S'_0 into some Q_i with the interior of S'_0 carried into the interior of Q_i. The boundaries of the subdisks of each D_L are carried to the curves W_i, X_i, Y_i, and Z_i. Recall that the disks constructed in Step 2 bounded by X_i and Y_i had neighborhoods of their boundaries mapped into Q_i. Thus, if we move f by a small homotopy that pulls the images of the arcs in D_L defined above into the interior of Q_i, we get a different description of the interior of $\text{Bd } I^3$. We now have a genus zero surface S_0 in $\text{Bd } I^3$ obtained from S'_0 by adding neighborhoods of those arcs in the disks D_L that were part of the boundaries of subdisks whose boundaries went to W_i or Z_i under f. Also, added to S'_0 are those parts in Q_i of the subdisks of D_L whose boundaries went to X_i and Y_i under f.

We now have S_0 mapped to Q_i by f, $f(\text{Bd } S_0) \subset \text{Bd } Q_i$, $f(\text{Int } S_0) \subset \text{Int } Q_i$, and each boundary component of S_0 mapped to curves parallel to W_i or Z_i. The disks of $(\text{Bd } I^3) - S_0$ are the disks described in Step 2 bounded by curves parallel to W_i and Z_i. Note that portions of Bd I^3 other than S_0 are mapped into Q_i, namely parts of the disks constructed in Step 2 bounded by curves parallel to W_i.
We would like to extend \(f|_{\text{Bd } I^3} \) to all of \(I^3 \). We will do that by first constructing a map which takes a 3-cell into \(N_i \) and which takes the boundary of the 3-cell to a set somewhat different from \(f(\text{Bd } I^3) \). We will then show how to use this new map to extend \(f \) to all of \(I^3 \).

Orient \(Z, W, \) and \(S_0 \). Orient the boundary components of \(S_0 \) consistently with \(S_0 \). Since \(Z \) and \(W \) are independent generators of \(H_i(Q_i) = \mathbb{Z} \oplus \mathbb{Z} \), there must be as many boundary components of \(S_0 \) mapping to curves on \(G_i \) parallel to \(Z_i \) as antiparallel to \(Z_i \). Similarly, for \(W_i \) on \(F_i \). Thus, we can add annuli between pairs of components of \(\text{Bd } S_0 \) that map to \(G_i \) and send the annuli into \(G_i \), and we can add annuli between pairs of components of \(\text{Bd } S_0 \) that map to \(F_i \) and send these annuli into \(F_i \) to create a closed orientable singular surface \(S_1 \) that maps into \(Q_i \).

We can regard \(Q_i \) as a submanifold of \(P \) with \(S_1 \) mapping into \(\text{Bd } T_1 \) and \(\text{Bd } T_2 \) along the annuli added in the last paragraph. We can remove the annuli mapping into \(\text{Bd } T_2 \) and cap off the holes with disks that map onto meridional disks of \(T_2 \). This only partially reconstructs a sphere, leaving us with a surface that we will call \(S_2 \). We have to be more careful in dealing with \(T_1 \).

Let \(A \) be an annulus added in the creation of \(S_1 \) that maps into \(\text{Bd } T_1 \). Let \(E \) be an arc in \(A \) joining its two boundary components. Let \(E' \) be an arc in \(S_0 \) connecting the endpoints of \(E \). We can do this for all the annuli mapping into \(\text{Bd } T_1 \) keeping the arcs \(E' \) disjoint since \(S_0 \) is a sphere with holes.

Let \(E \cup E' \) be one of the simple closed curves on \(S_2 \) just constructed. Its image may not shrink in \(P - \text{Int } T_1 \). However, \(W \) generates \(\pi_1(P - \text{Int } T_1) \) and the annulus containing \(E \) contains a curve \(W' \) that maps to a curve parallel to \(W \) and that pierces \(E \) once. Thus, \(E \) can be replaced by another arc \(E'' \) in the annulus by adding multiples of \(W' \), so that the image of \(E'' \cup E' \) bounds a singular disk in \(P - \text{Int } T_1 \). Do this for each annulus.

We will now compress the surface \(S_2 \) by replacing annular neighborhoods of the curves \(E'' \cup E' \) by pairs of disks that map into \(P - \text{Int } T_1 \). This gives us a sphere \(S_3 \) that maps into \(P - \text{Int } T_1 \). We can make sure that the images of the new disks hit \(T_2 \) in meridional disks.

Since \(P \) is a homotopy 3-sphere and \(T_1 \) is connected, the sphere theorem [17] says that \(\pi_2(P - \text{Int } T_1) = 0 \). Thus, \(S_3 \) bounds a 3-cell that maps into \(P - \text{Int } T_1 \). We have already identified \(Q_i \) with \(\text{Cl}(P - T_1 - T_2) \). We can map \(T_2 \) to \(\hat{N}_{i+1} \) by Step 3. Recall that this map was badly behaved only on certain 3-cells. We can insure that these 3-cells do not intersect the meridional disks in \(T_2 \) that are in the image of \(S_3 \).

Certain meridional disks of \(\text{Image}(S_1) \cap T_2 \) were meridional disks of \(\text{Image}(S_2) \cap T_2 \). These will be carried onto the disks in \(\hat{N}_{i+1} \) capping off those components of \(\text{Bd } S_0 \) mapped to curves parallel to \(Z_i \).

We have carried \(S_3 \) and the 3-cell it bounds into \(\hat{N}_i \). We wish to show that \(f(\text{Bd } I^3) \) bounds a 3-cell. Unfortunately, \(S_3 \) and \(\text{Bd } I^3 \) do not coincide. We will analyze their differences. In what follows, certain letters will represent collections of objects.

To obtain \(S_3 \) from \(\text{Bd } I^3 \), pairs of disks \(D \) whose boundaries map to curves
parallel to \(W_i \) are removed and replaced by annuli \(A \). Annuli \(A \) that are neighborhoods of the curves \(E'' \cup E' \) are removed and replaced by pairs of disks \(D \). The annuli \(A \) and the annuli \(\tilde{A} \) are paired, one from \(A \) with one from \(\tilde{A} \), with each associated pair intersecting transversely in a disk and all other combinations disjoint.

For each pair in \(D \), the images of the two disks are parallel off \(p \) since the map from \(T_2 \) to \(\hat{N}_{i+1} \) is well behaved off certain 3-cells, and the parallel pairs can be kept close together in \(T_2 \) so that the 3-cells containing the bad part of the map of Step 3 do not get between them.

Thus, each annulus from \(\tilde{A} \) with its associated pair of disks from \(\tilde{D} \) bounds a 3-cell mapping into \(\hat{N}_i \) which can be added to the 3-cell bounded by \(S_3 \) as a 1-handle. This removes the disks \(\tilde{D} \) from \(S_3 \) and adds in the annuli \(\tilde{A} \). This turns the 3-cell bounded by \(S_3 \) into a handlebody mapping into \(\hat{N}_i \).

We now point out that the disk pairs \(D \) map to parallel copies of the disks of Step 2 bounded by \(W_i \). Each of these pairs together with the appropriate annulus from \(A \) bounds a singular 3-cell mapping into \(\hat{N}_{i-1} \). Each of these 3-cells can be added to the handlebody of the last paragraph as a 2-handle. By this process Bd \(I^3 \) is recovered. The 1-handles and 2-handles are transverse in pairs and cancel. Thus, a 3-cell that maps into \(\hat{N}_{i-1} \) and is bounded by Bd \(I^3 \) is created. There is a map from \(I^3 \) to this 3-cell that is the identity on Bd \(I^3 \). Step 4 is complete.

Step 5. \(\hat{M} \) is locally contractible. Each \(\hat{N}_i \) collapses to a subset of its 2-skeleton \(\cup \{ p \} \). We thank D. R. McMillan for pointing this out. One way to accomplish this is to take a triangulation of \(N_i \) small with respect to the various \(Q_j \) and start collapsing at Bd \(N_i \). We can demand that all 3-simplexes in a \(Q_j \) be collapsed before starting on any in \(Q_{j+2} \). Thus, points near \(p \) will not be moved far from \(p \) in the process. This much care is not really needed since each \(Q_j \) is compact and there are an infinite number of \(N_k \).

It is now a standard exercise to pull the various skeleta near \(p \) into \(p \) within a slightly larger neighborhood.

We now look at the local homology properties of \(\hat{M} \). By excision it is sufficient to show \(H_*(\hat{N}_i, N_i) \approx H_*(E^3, E^3 - \{0\}) \) for one \(i \). We will consider the following exact sequence:

\[
H_3(\hat{N}_i) \to H_3(\hat{N}_i, N_i) \to H_2(N_i) \to H_2(\hat{N}_i) \to H_2(\hat{N}_i, N_i)
\]

\[
\to H_1(N_i) \to H_1(\hat{N}_i) \to H_1(\hat{N}_i, N_i) \to 0.
\]

We will use the following observation. Since each \(\hat{N}_j \) contracts in some \(\hat{N}_{j-k} \) (\(k \) fixed), then each \(n \)-cycle in \(\hat{N}_j \) is homologous to an \(n \)-cycle in Bd \(\hat{N}_j \). This is geometrically obvious and can be shown using excision.

Step 6. The groups \(H_3(\hat{N}_j) \), \(H_2(\hat{N}_j) \) and \(H_1(M) \) are trivial and \(H_2(N_j) \approx Z \). The first two we get from the above observation, from the fact that \(H_3(\text{Bd} \, \hat{N}_j) = 0 \) and from the map of Step 3. We get \(H_1(M) = 0 \) since every loop in \(Q_j \) bounds mod \(W_i \) and \(Z_i \) which each bound in \(Q_{i-1} \) and \(Q_{i+1} \) respectively. Since \(H_1(M) = 0 \), every surface in \(M \) separates. Since \(M \) has one end, every surface bounds. We can show \(H_2(N_i) \approx Z \) by the Mayer-Vietoris sequence.
Step 7. The map \(i_* \) is an isomorphism. Local simple connectivity shows that \(i_* \) is surjective. Loops passing through \(p \) can be pulled slightly off \(p \).

To show \(i_* \) is injective we consider a loop \(L \) that bounds a surface in \(\tilde{N}_i \). By Lemma 2.2, \(M \) is 1-acyclic at infinity. Thus, there is an \(N_j \) so that every loop in \(N_j \) bounds in \(N_i \). Since \(L \) is compact, \(N_j \) can also be chosen to miss \(L \). The surface bounded by \(L \) can be cut off on \(\text{Bd} \, N_j \) and replaced by a surface completely contained in \(N_i \).

Step 8. The space \(\tilde{M} \) is a generalized 3-manifold. The local homology properties follow from the information filled in the long exact sequence. Also a finite dimensional, locally contractible, separable metric space is an ANR and in fact a retract of an open subset of a finite dimensional Euclidean space (see [4, p. 122]).

Step 9. The 3-manifold \(M \) embeds in no compact 3-manifold. We use a result of [23] that is based on Haken’s finiteness theorem for incompressible surfaces [9, §4]. Since each \(Q_i \) has incompressible boundary, [23] says that if \(M \) embeds in a compact 3-manifold \(X \), then all but a finite number of \(\text{Cl}(X - K_j) \) would be solid tori. Since \(X - M \) would be cell-like (see introduction), the map from a solid torus \(\text{Cl}(X - K_j) \) to \(\tilde{N}_i \) gotten by mapping \(X - M \) to \(p \) would be an isomorphism on \(\pi_1 \) [12]. Thus, a meridian for \(\text{Cl}(X - K_j) \) would go to a curve on \(\text{Bd} \, \tilde{N}_i \) trivial in \(\tilde{N}_i \). Such a curve must be \(X_j \). Since all but a finite number of the \(\text{Cl}(X - K_j) \) are solid tori, we can find an \(i \) and \(i + 1 \) where this holds.

Thus, \(\text{Cl}(X - K_{i+1}) \) is a solid torus with meridian \(X_{i+1} \). But \(X_{i+1} \) is \(Z_i \), and \(Q_i \) plus a solid torus with meridian sewn to \(Z_i \) is \(P - T_i \). This would say that \(P - T_i \) is homeomorphic to \(\text{Cl}(X - K_i) \), a solid torus, with \(X_i \) as a meridian. But this would imply \(P \cong S^3 \), contradicting our choice of \(P \).

This proves Theorem 3.

References

3. _____, Necessary and sufficient conditions that a 3-manifold be \(S^3 \), Ann. of Math. (2) 68 (1958), 17–37.

Department of Mathematics, State University of New York at Binghamton, Binghamton, New York 13901