NON-QUASI-WELL BEHAVED CLOSED • DERIVATIONS

BY

FREDERICK M. GOODMAN

ABSTRACT. Examples are given of a non-quasi-well behaved closed • derivation in $C([0, 1] \times [0, 1])$ extending the partial derivative, and of a compact subset Ω of the plane such that $C(\Omega)$ has no nonzero quasi-well behaved • derivations but $C(\Omega)$ does admit nonzero closed • derivations.

1. Introduction. A regularity condition which arises in the study of unbounded derivations in C^* algebras is quasi-well behavedness. (A definition is given below.) Sakai asked in [S2] whether every closed • derivation in a C^* algebra must be quasi-well behaved (qwb). Batty gave a counterexample: a compact subset \mathbb{D}^2 of the plane such that the partial derivative $\partial/\partial x$ defines a non-qwb closed • derivation in $C(\mathbb{D}^2)$ [B2, Example 5].

Most of this paper is devoted to two further examples. In §3, we present an example of a non-qwb closed • derivation in $C([0, 1] \times [0, 1])$ which is an extension of the partial derivative $\partial/\partial x$. This is interesting for two reasons. It shows that an extension of the qwb closed • derivative $\partial/\partial x$ need not be qwb. And it provides an example of a non-qwb closed • derivation in $C_0(M)$, where M is a manifold. (The boundary of the unit square plays no role.) The second example, in §4, is of a compact subset \mathbb{D}^2 of the plane such that $C(\mathbb{D}^2)$ has no nonzero qwb • derivations, but does admit nontrivial closed • derivations.

§2 contains a brief discussion of qwb and non-qwb closed • derivations in $C[0, 1]$. The remainder of this introduction contains definitions and preliminary results.

We will be concerned exclusively with commutative C^* algebras. Let Ω be compact Hausdorff. A linear map δ in $C(\Omega)$ is called a • derivation if its domain $\mathcal{D}(\delta)$ is a dense conjugate closed subalgebra of $C(\Omega)$, and δ satisfies $\delta(fg) = f\delta(g) + \delta(f)g$ and $\delta(f) = \delta(f)$ for all $f, g \in \mathcal{D}(\delta)$. If δ is a closed map, then $\mathcal{D}(\delta)$, with the graph norm $\| \cdot \|_\delta = \| \cdot \|_\infty + \| \delta(\cdot) \|_\infty$, is a Silov regular Banach algebra with structure space Ω. The Silov algebra $\mathcal{D}(\delta)$ has a C^* functional calculus. If $f, g \in \mathcal{D}(\delta)$ agree in a neighborhood of $\omega \in \Omega$, then $\delta(f)(\omega) = \delta(g)(\omega)$ [S2], [G2], [B3].

We let $\mathcal{D}(\delta)_{\omega,a}$ denote the set of real valued functions in $\mathcal{D}(\delta)$.

DEFINITION 1.1. Let δ be a • derivation in $C(\Omega)$ (not necessarily closed).

(i) $f \in \mathcal{D}(\delta)_{\omega,a}$ is said to be well behaved if $\exists \omega \in \Omega$ such that $\| f \|_\infty = |f(\omega)|$ and $\delta(f)(\omega) = 0$.

Received by the editors April 29, 1980.

1980 Mathematics Subject Classification. Primary 46L99; Secondary 46J10, 47B47.

Key words and phrases. C^* algebras, closed • derivations, quasi-well behaved.

© 1981 American Mathematical Society

0002-9947/81/0000-0169/S03.00

571
(ii) \(f \in \mathcal{D}(\delta)_{s.a.} \) is said to be strongly well behaved if \(\forall \omega \in \Omega, \|f\|_{\infty} = |f(\omega)| \) implies \(\delta(f)(\omega) = 0 \).

(iii) A point \(\omega \in \Omega \) is said to be well behaved if \(\forall f \in \mathcal{D}(\delta)_{s.a.}, \|f\|_{\infty} = |f(\omega)| \) implies \(\delta(f)(\omega) = 0 \).

Notation. Denote the set of well behaved functions in \(\mathcal{D}(\delta)_{s.a.} \) by \(WF(\delta) \) and the set of well behaved points in \(\Omega \) by \(WP(\delta) \). By \(int WF(\delta) \), we mean the interior of \(WF(\delta) \) in \(\mathcal{D}(\delta)_{s.a.} \) with respect to the sup-norm.

The following result is due to C. Batty [B1, Proposition 7], [B2, Propositions 2, 3 and Theorem 4].

Theorem 1.2. Let \(\delta \) be a \(\ast \) derivation in \(C(\Omega) \).

1. Every element of \(int WF(\delta) \) is strongly well behaved.

2. The following conditions are equivalent:
 - (a) \(WP(\delta) = \Omega \),
 - (b) \(WF(\delta) = \mathcal{D}(\delta)_{s.a.} \).

3. The following conditions are equivalent:
 - (a) \(int WP(\delta) \) is dense in \(\Omega \),
 - (b) \(int WF(\delta) \) is dense in \(\mathcal{D}(\delta)_{s.a.} \) in the sup-norm.

Definition 1.3. A \(\ast \) derivation is called well behaved if it satisfies the conditions of 1.2(2). It is called quasi-well behaved if it satisfies the conditions of 1.2(3).

To give these definitions a context, we mention that a closed \(\ast \) derivation \(\delta \) is the infinitesimal generator of a strongly continuous one parameter group of \(\ast \) automorphisms (a \(C^* \) dynamics) if and only if

(i) \(\delta \) is well behaved, and

(ii) \((\delta \pm 1)\mathcal{D}(\delta) = C(\Omega) \).

A qwb \(\ast \) derivation is always closable, and the closure is again qwb [S2], [B1].

Lemma 1.4. Let \(\delta \) be a closed \(\ast \) derivation in \(C(\Omega) \), and let \(\omega \in WP(\delta) \). If \(f \in \mathcal{D}(\delta)_{s.a.} \) has a local extremum at \(\omega \), then \(\delta(f)(\omega) = 0 \).

Proof. By replacing \(f \) by \(-f + c1\) if necessary, we can assume that \(f \) has a local maximum at \(\omega \) and \(f(\omega) > 0 \). Let \(U \) be an open neighborhood of \(\omega \) such that for all \(\omega' \in U, f(\omega') > f(\omega) > 0 \). There is an \(e \in \mathcal{D}(\delta) \) such that \(e = 1 \) near \(\omega \), \(0 < e < 1 \), and \(\text{support}(e) \subseteq U \) (because \(\mathcal{D}(\delta) \) is a conjugate closed Silov algebra). Then \(ef \in \mathcal{D}(\delta)_{s.a.} \) and \(\|ef\|_{\infty} = (ef)(\omega) \). Since \(\omega \in WP(\delta) \), \(\delta(ef)(\omega) = 0 \). But \(f = ef \) near \(\omega \); so \(\delta(f)(\omega) = 0 \) also. \(\square \)

Definition 1.5. Let \(\delta \) be a closed \(\ast \) derivation in \(C(\Omega) \). A closed subset \(E \subseteq \Omega \) is called a restriction set for \(\delta \) if \(\delta(f)|_E = 0 \) whenever \(f|_E = 0 \). If \(E \) is a restriction set, then the formula \(\delta_E(f)(\omega) = \delta(f)|_E \) defines a \(\ast \) derivation in \(C(E) \) with domain \(\{f|_E : f \in \mathcal{D}(\delta)\} \).

If \(\delta \) is a closed \(\ast \) derivation in \(C(\Omega) \) and \(U \subseteq \Omega \) is open, then \(\bar{U} \) is a restriction set for \(\delta \) and \(\delta_{\bar{U}} \) is closable [B3].

Lemma 1.6. Let \(\delta \) be a closed \(\ast \) derivation in \(C(\Omega) \), and let \(U \) be an open subset of \(\Omega \). Then \(WP(\delta) \cap U \subseteq WP(\delta_{\bar{U}}) \). Consequently if \(\delta \) is qwb, then \(\delta_{\bar{U}} \) is also qwb.
NON-QUASI-WELL BEHAVED CLOSED \(\ast \) DERIVATIONS

Proof. Let \(\omega \in WP(\delta) \cap U \) and suppose \(f \in \mathcal{G}(\delta U)_{sa} \) satisfies \(\|f\|_U = |f(\omega)| \). Let \(e \) be an element of \(\mathcal{G}(\delta) \) such that \(e = 1 \) near \(\omega \), \(0 < e < 1 \), and \(\text{support}(e) \subseteq U \). Then \(fe \in \mathcal{G}(\delta) \) and \(\|fe\|_\infty = |(fe)(\omega)| = |f(\omega)| \). Therefore \(\delta_f(f)(\omega) = \delta(fe)(\omega) = 0 \). \(\square \)

Lemma 1.7. Suppose \(\delta \) is a closable \(\ast \) derivation in \(C(\Omega) \). Then \(\text{int} \ WP(\delta) = \text{int} \ WP(\tilde{\delta}) \).

Proof. Suppose that \(f \in \mathcal{G}(\tilde{\delta})_{sa} \) attains its maximum value at a point \(\omega_0 \in \text{int} \ WP(\delta) \). We have to show that \(\tilde{\delta}(f)(\omega_0) = 0 \). Assume without loss of generality that \(f \leq 0 \) and \(f(\omega_0) = 0 \). Let \(U \) be an open neighborhood of \(\omega_0 \) in \(\text{int} \ WP(\delta) \), and let \(e \in \mathcal{G}(\tilde{\delta}) \) satisfy \(e = 1 \) near \(\omega_0 \), \(0 < e < 1 \), and \(\text{support}(e) \subseteq U \). For each \(n \in \mathbb{N} \), choose \(f_n \in \mathcal{G}(\delta) \) satisfying:

1. \(\|f_n - (f + e/n)\|_\infty < 1/3n \), and
2. \(\|\tilde{\delta}(f_n) - \tilde{\delta}(f + e/n)\|_\infty < 1/n \).

Since \((f + e/n)(\omega_0) = 1/n, f_n(\omega_0) > 2/3n \). For \(\omega \not\in U \),

\[f_n(\omega) < f(\omega) + 1/3n < 1/3n. \]

Therefore \(f_n \) achieves its maximum value at a point \(\omega_n \in U \), and \(\tilde{\delta}(f_n)(\omega_n) = 0 \), since \(U \subseteq WP(\delta) \). It follows from (2) that

\[|\tilde{\delta}(f)(\omega_n)| < n^{-1} + n^{-1} \|\tilde{\delta}(e)\|_\infty. \]

If \(\omega \) is an accumulation point of \(\langle \omega_n \rangle \), then \(\omega \in \text{cl}(U) \) and \(\tilde{\delta}(f)(\omega) = 0 \). Since \(U \) was an arbitrary neighborhood of \(\omega_0 \) in \(\text{int} \ WP(\delta) \), this shows that \(\tilde{\delta}(f)(\omega_0) = 0 \); thus \(\text{int} WP(\delta) \subseteq \text{int} WP(\tilde{\delta}) \). The opposite inclusion is evident. \(\square \)

This paper is part of my Ph.D. thesis [G1]. I wish to thank Professor William Bade for his help and encouragement. I am also grateful to C. Batty and S. Sakai for helpful correspondence.

2. Closed \(\ast \) derivations in \(C([0, 1]) \). Let \(I \) denote the interval \([0, 1]\). The following conditions are equivalent for a closed \(\ast \) derivation in \(C(I) \) [S2]:

1. \(\mathcal{G}(\delta) \) contains a homeomorphism of \(I \) onto \(I \).
2. There is a \(\ast \) automorphism \(\alpha \) of \(C(I) \) such that \(\alpha C^1(I) \subseteq \mathcal{G}(\delta) \).

Derivations meeting these conditions were investigated in [G2] and [B3]. Batty showed in [B3] that they are precisely the qwb closed \(\ast \) derivations in \(C(I) \). It follows from this that a closed \(\ast \) derivation in \(C(I) \) extending a qwb \(\ast \) derivation is necessarily qwb. Using methods of [G2, §3] one can derive similar results for closed \(\ast \) derivations in \(C_0(\mathbb{R}) \) and \(C(T) \). (\(T \) denotes the circle.) It is an open question whether there are any non-qwb closed \(\ast \) derivations in these algebras.

Lemma 2.1. Suppose \(C(I) \) has a non-qwb closed \(\ast \) derivation. Then \(C(I) \) has a closed \(\ast \) derivation \(D \) satisfying:

1. \(\text{int} WP(D) = \varnothing \),
2. if \(f \in \mathcal{G}(D)_{sa} \), then \(f \) is not one-to-one on any subinterval of \(I \).

Proof. If \(\delta \) is a closed non-qwb \(\ast \) derivation in \(C(I) \), let \(J \) be a closed interval such that \(J \cap \text{int} WP(\delta) = \varnothing \). Let \(D \) denote the closure of \(\delta_J \). It is easily seen that

\[\text{int} WP(D) \cap \text{int}(J) \subseteq \text{int} WP(\delta) \cap \text{int}(J) = \varnothing. \]
If $f \in \mathfrak{D}(D)_{s.a.}$ is one-to-one on a closed interval $K \subseteq J$, then by the remarks above, D_K is qwb. But $\text{int } WP(D_K) \cap \text{int}(K) \subseteq \text{int } WP(D) = \emptyset$. This is a contradiction.

This lemma shows that if there are any non-qwb closed * derivations in $C(I)$ at all, then there are some which are quite strange. A closed * derivation D in $C(I)$ such that $\text{int } WP(D) = \emptyset$ would surely have nothing at all to do with differentiation.

The following lemma will be used in §4.

Lemma 2.2. Let δ be a well behaved * derivation in $C(I)$. Then $\delta(f)(0) = \delta(f)(1) = 0$ for all $f \in \mathfrak{D}(\delta)$.

Proof. Since δ is closable and its closure is also well behaved [S2, Theorem 2.9], we can assume that δ is closed. It also suffices to prove the statement for f real valued. If f is one-to-one in some neighborhood of 0, then f has a local extremum at 0, and $\delta(f)(0) = 0$ (1.4). If f is never one-to-one in a neighborhood of 0, then in each neighborhood f has a local extremum, and therefore in each neighborhood there is a point p such that $\delta(f)(p) = 0$. By continuity, $\delta(f)(0) = 0$ in this case also. Similarly, $\delta(f)(1) = 0$. □

3. A non-quasi-well behaved closed * derivation in $C(I \times I)$. While any non-qwb closed * derivation in $C(I)$ must be fairly bizarre, there are rather tame examples of non-qwb closed * derivations in $C(I \times I)$. In fact there exist closed * derivations extending the partial derivative $\partial / \partial x$ in $C(I \times I)$ such that the interior of the set of well behaved points is empty. To give such an example, we require the following lemma, due to Batty [B3, Theorem 4.4].

Lemma 3.1. Let δ be a closed * derivation in $C(\Omega)$ and let $f \in \ker(\delta)_{s.a.}$. Let $E = f^{-1}(0)$ and let $\omega_0 \in \text{int } WP(\delta) \cap E$. If $h \in \mathfrak{D}(\delta)_{s.a.}$ and $h(\omega_0) = \sup\{h(\omega) : \omega \in E\}$, then $\delta(h)(\omega_0) = 0$.

Consequently, if $\text{int } WP(\delta) \cap E$ is dense in E, then E is a restriction set for δ and δ_E is qwb. If $E \subseteq \text{int } WP(\delta)$, then δ_E is well behaved.

Let us write ∂ for $\partial / \partial x$. The natural domain for ∂ is $\{f : \partial f$ exists and is continuous on $I \times I\}$, and with this domain, ∂ is a closed * derivation.

Let Y and Z be compact Hausdorff spaces. We say a continuous function $\Phi : I \times Y \to Z$ is a generalized Cantor function (gcf) if each fiber $\Phi^{-1}(z) (z \in Z)$ is a connected subset of $I \times \{y\}$ for some $y \in Y$ and Φ is not one-to-one on any open subset of $I \times Y$. It was shown in [G2] that for any gcf $\Phi : I \times I \to Z$ there is a unique closed * derivation D extending ∂ such that $\mathfrak{D}(D) = \mathfrak{D}(\partial) + \Phi^0(C(Z))$ and $\ker(D) = \Phi^0(C(Z))$.

We will produce a gcf $\Phi : I \times I \to Z$ such that the set

$$S = \{y \in I : x \mapsto \Phi(x, y) \text{ is injective on } I\}$$

is dense in I. Suppose for the moment that this has been done. Let D be the closed * derivation in $C(I \times I)$ extending ∂ and with $\ker(D) = \Phi^0(C(Z))$. Assume that $\text{int } WP(D)$ is not empty and let J and K be closed subintervals of I such that
Let $J \times \{y_0\} \subseteq \text{int} WP(D)$. Then $D_{J \times K}$ is well defined and closable, and
\[
\text{int}(J \times K) \subseteq \text{int} WP(D_{J \times K}) \quad \text{(Lemma 1.6)}
\]
\[
\subseteq \text{int} WP(D_{J \times K}) \quad \text{(Lemma 1.7)}.
\]
Let $y_0 \in S \cap \text{int}(K)$. The set $J \times \{y_0\}$ is the zero set of the function $(x,y) \mapsto y - y_0$, which is an element of the kernel of $D_{J \times K}$. By Lemma 3.1, $J \times \{y_0\}$ is a restriction set for $D_{J \times K}$, and therefore for D. On the one hand, $D_{J \times \{y_0\}}$ extends $D_{J \times \{y_0\}}$, a nonzero derivation. On the other hand, $\ker(D)$ separates points of $J \times \{y_0\}$. Hence
\[
\ker(D_{J \times \{y_0\}}) \supseteq \{ f|_{J \times \{y_0\}} : f \in \ker(D) \} = C(J \times \{y_0\}).
\]
That is, $D_{J \times \{y_0\}}$ is zero. This contradiction shows that in fact $\text{int} WP(D) = \emptyset$.

We now turn to the construction of Φ. Let $\langle f_i : I \to I \rangle_{i \in \mathbb{N}}$ be a sequence of nondecreasing gcf's which collectively separate points of I [G2, 1.3.3]. Define
\[
g_n = \sum_{i=1}^{n} 2^{-i} f_i \quad (n \in \mathbb{N}), \quad \text{and} \quad g_\infty = \sum_{i=1}^{\infty} 2^{-i} f_i.
\]
Then each g_n is a nondecreasing gcf, but g_∞ is injective. Define $H : I \times I \to \mathbb{R}$ by the following rules.

(a) $H(x, \frac{1}{2} + n^{-1}) = g_n(x) (n \in \mathbb{N})$.

(b) $H(x, \frac{1}{2}) = g_\infty(x)$.

(c) For $\frac{1}{2} + (n + 1)^{-1} \leq y \leq \frac{1}{2} + n^{-1}$, $H(x, y)$ is to be affine in y for each fixed x.

(d) $H(x, \frac{1}{2} - t) = H(x, \frac{1}{2} + t) (x \in I, 0 < t < \frac{1}{2})$.

Then H is continuous, $x \mapsto H(x, y)$ is a nondecreasing gcf for each $y \neq \frac{1}{2}$, and $x \mapsto H(x, \frac{1}{2}) = g_\infty(x)$ is injective. Note also that
\[
H(x, 0) = H(x, 1) = g_1(x) = f_1(x).
\]

Now let n, k be odd positive integers, with $1 < k < 2^n - 1$. Let
\[
J_{n,k} = \left[k \cdot 2^{-n} - 2^{-(n+1)}, k \cdot 2^{-n} + 2^{-(n+1)} \right],
\]
and let $T_{n,k}$ be the following affine transformation of \mathbb{R} which maps $J_{n,k}$ onto $[0, 1]$:
\[
T_{n,k}(y) = 2y + \frac{1}{2} - k.
\]
Define
\[
\phi_{n,k}(x, y) = \begin{cases} f_1(x) & (y \notin J_{n,k}), \\
H(x, T_{n,k}(y)) & (y \in J_{n,k}).
\end{cases}
\]
If $y \neq k \cdot 2^{-n}$, then $x \mapsto \phi_{n,k}(x, y)$ is a gcf, but

(1) the function $x \mapsto \phi_{n,k}(x, k \cdot 2^{-n})$ is injective.

Let A be the C^* algebra generated by $\{\phi_{n,k}\}$ and the 2nd coordinate function $(x, y) \mapsto y$, and let $\Phi : I \times I \to Z$ be a continuous function such that $A = \Phi(C(Z))$. We claim that Φ is a gcf. Since it is clear that each fiber of Φ is a connected subset of $I \times \{y\}$ for some y, to prove the claim it will suffice to show that

(2) for each even positive integer m and each odd j with $1 < j < 2^m - 1$, the function $x \mapsto \Phi(x, j \cdot 2^{-m})$ is a gcf.
Let m and j be given. The fibers of $\Phi(\cdot, j \cdot 2^{-m})$ are the same as those of the function
\[x \mapsto \sum_{\substack{n,k \text{ odd} \\ 1 \leq n \leq m \\ 1 \leq k < 2^n - 1}} 2^{-(n+k)}\phi_{n,k}(x, j \cdot 2^{-m}). \]

Suppose n, k are odd positive integers with $n > m$ and $1 \leq k < 2^n - 1$. Since $j \cdot 2^{-m} \neq k \cdot 2^{-n}$,
\[|j \cdot 2^{-m} - k \cdot 2^{-n}| = |j \cdot 2^{n-m} - k| \cdot 2^{-n} > 2^{-n}. \]
Therefore $j \cdot 2^{-m} \not\in J_{n,k}$ and $\phi_{n,k}(x, j \cdot 2^{-m}) = f_1(x)$. It follows that the fibers of $\Phi(\cdot, j \cdot 2^{-m})$ are the same as those of the generalized Cantor function
\[x \mapsto f_1(x) + \sum_{\substack{n,k \text{ odd} \\ 1 \leq n \leq m \\ 1 \leq k < 2^n - 1}} \phi_{n,k}(x, j \cdot 2^{-m}). \]
This proves (2) and shows that Φ is a gcf.

From (1) it follows that $x \mapsto \Phi(x, k \cdot 2^{-n})$ is injective for each odd n and k with $1 \leq k < 2^n - 1$. Thus Φ has all the desired properties.

4. An example. An example is given here of a closed subset Ω of $I \times I$ such that $C(\Omega)$ has no nonzero closed quasi-well behaved \ast derivation but does admit nontrivial closed \ast derivations.

We construct an Ω with the following properties:
(i) The projection of Ω on the second coordinate axis is totally disconnected.
(ii) Each nonempty (relatively) open subset of Ω contains a nonempty compact-open subset of Ω. (But Ω is not totally disconnected.)
(iii) Ω is the closure of a union of horizontal line segments.

Let $\beta = (\beta_i)_{i \in \mathbb{N}}$ be any sequence with $\beta_i \in \{0, 2\}$ for all $i \in \mathbb{N}$. (Thus $\sum_{i=1}^{\infty} \beta_i 3^{-i}$ is an arbitrary element of the Cantor set Δ.) For each $n \in \mathbb{N}$ let
\[a_{n,\beta} = \sum_{i=1}^{n} \beta_i 3^{-i} \quad \text{and} \quad b_{n,\beta} = \sum_{i=1}^{n} \beta_i 3^{-i} + 3^{-(n+1)}. \]
For each such β and n, and for each odd k ($1 \leq k < 3^n - 2$), let
\[G_{n,k,\beta} = [(k-1) \cdot 3^{-n}, k \cdot 3^{-n}] \times [a_{n,\beta}, b_{n,\beta}]. \]
Define
\[\Omega = (I \times \Delta) \setminus \left(\bigcup_{n,k,\beta} G_{n,k,\beta} \right), \]
the union being over all allowed values of (n, k, β).

Some further notation will facilitate the discussion of Ω. For n and β as above and for odd k ($1 \leq k < 3^n$) define:
\[p_{n,k,\beta} = (k \cdot 3^{-n}, b_{n,\beta}), \]
\[E_{n,k,\beta} = [(k-1) \cdot 3^{-n}, k \cdot 3^{-n}] \times \{ b_{n,\beta} \}, \]
\[H_{n,k,\beta} = [(k-1) \cdot 3^{-n}, k \cdot 3^{-n}] \times [a_{n,\beta}, b_{n,\beta}]. \]
Note that for all n, β,
\[a_{n,\beta} - 3^{-(n+1)} \leq a_{n,\beta} \leq R \setminus \Delta, \quad \text{and} \quad b_{n,\beta}, b_{n,\beta} + 3^{-(n+1)} \leq R \setminus \Delta. \]
Hence, if for each odd \(k \) \((1 \leq k \leq 3^a - 2)\) we let
\[
K_{n,k,\beta} = \left] k \cdot 3^{-n}, (k + 1) \cdot 3^{-n} \right[\times a_{n,\beta} - 3^{-(n+1)}, b_{n,\beta} + 3^{-(n+1)}] ,
\]
then
\[
\Omega = (I \times \Delta) \setminus \left(\bigcup _{n,k,\beta} K_{n,k,\beta} \right).
\]
This shows that \(\Omega \) is a closed set.

We next observe that for each \((n, k, \beta)\), the set \(H_{n,k,\beta} \cap \Omega \) is open and closed in \(\Omega \). It is clearly closed, and it is open because
\[
H_{n,k,\beta} \cap \Omega = \left(\left] (k - 2) \cdot 3^{-n}, (k + 1)3^{-n} \right[\times a_{n,\beta} - 3^{-(n+1)}, b_{n,\beta} + 3^{-(n+1)} \right] \right) \cap \Omega.
\]
One can show that \(\Omega \) has the following property. The details can be found in [G1, pp. 76–81].

Lemma. Let \(p \in \Omega \). For each \(\varepsilon > 0 \) there is a triplet \((n, k, \beta)\) such that
1. \(E_{n,k,\beta} \subseteq \Omega \),
2. \(\text{diameter}(H_{n,k,\beta}) < \varepsilon \),
3. \(\text{distance}(p, p_{n,k,\beta}) < \varepsilon \).

Now suppose that \(\delta \) is a closed \(* \) derivation in \(C(\Omega) \) and that \(p \in \text{int} WP(\delta) \). If \(U \) is an open neighborhood of \(p \) in \(\text{int} WP(\delta) \), then by the lemma there is a triplet \((n, k, \beta)\) such that \(E_{n,k,\beta} \subseteq \Omega \) and \(H_{n,k,\beta} \cap \Omega \subseteq U \). Let \(H = H_{n,k,\beta} \cap \Omega \). \(H \) is a restriction set for \(\delta \), and \(\delta_H \) is well behaved (1.6). Since \(\mathcal{S}(\delta) \) is a Silov algebra and \(H \) is open and closed, the characteristic function \(1_H \) of \(H \) is an element of \(\mathcal{S}(\delta) \). It follows from this that \(\delta_H \) is also closed.

Let \(\pi \) denote the second coordinate projection on \(H \); \(\pi(\Omega) \) is totally disconnected and therefore \(C(\pi(\Omega)) \) is the uniform closure of the subalgebra generated by its projections. If \(e \in C(\pi(\Omega)) \) is a projection, then \(\pi^0(e) \) is a projection in \(C(H) \). Since \(\delta_H \) is a closed \(* \) derivation, \(\ker(\delta_H) \) contains the \(C^* \) algebra generated by these projections; that is
\[
\ker(\delta_H) \supseteq \pi^0(C(\pi(\Omega))) = \pi^0(C(I)).
\]
It follows that each set \(H' = (I \times \{ y \}) \cap H \) has the form \(f^{-1}(0) \) for some real valued \(f \in \ker(\delta_H) \). By 3.1, if \(H' \neq \emptyset \), then \(H' \) is a restriction set for \(\delta_H \), and the induced derivation \((\delta_H)_{H'} = \delta_{H'} \) is well behaved. Taking \(y = b_{n,\beta} \), we have \(H' = E_{n,k,\beta} \).

Let \(f \in \mathcal{S}(\delta) \). Since \(\delta_{E_{n,k,\beta}} \) is well behaved, Lemma 2.2 implies
\[
\delta(f)(p_{n,k,\beta}) = \delta_{E_{n,k,\beta}}(f|_{E_{n,k,\beta}})(p_{n,k,\beta}) = 0.
\]
Thus
\[
p_{n,k,\beta} \in Z = \{ \omega \in \Omega : \delta(f)(\omega) = 0 \ \forall f \in \mathcal{S}(\delta) \}.
\]
This shows that \(Z \) intersects each neighborhood of the point \(p \) in \(\text{int} WP(\delta) \). Since \(Z \) is closed, \(p \in Z \); that is \(\text{int} WP(\delta) \subseteq Z \). It follows that if \(\delta \) is quasi-well behaved, then \(Z = \Omega \), and \(\delta = 0 \).
It is easy to produce a nontrivial closed \ast derivation in $C(\Omega)$. By the lemma $\bigcup \{ E_{n,k,\beta} : E_{n,k,\beta} \subseteq \Omega \}$ is dense in Ω. Define \mathcal{A} to be the set of $f \in C(\Omega)$ such that $\partial f/\partial x$ exists on each $E_{n,k,\beta} \subseteq \Omega$ and $\partial f/\partial x$ extends to a continuous function on Ω. Note that \mathcal{A} contains $\{ f|_\Omega : f \in C^1(I \times I) \}$ and therefore \mathcal{A} is dense in $C(\Omega)$. The partial derivative $\partial/\partial x$ defines a closed \ast derivation in $C(\Omega)$ with domain \mathcal{A}. This \ast derivation is of course not qwb. But it does satisfy a weaker condition defined by Batty in [B2]; it is pseudo-well behaved.

References