Approximating topological surfaces in $4$-manifolds
HTML articles powered by AMS MathViewer
- by Gerard A. Venema
- Trans. Amer. Math. Soc. 265 (1981), 35-45
- DOI: https://doi.org/10.1090/S0002-9947-1981-0607105-3
- PDF | Request permission
Abstract:
Let ${M^2}$ be a compact, connected $2$-manifold with $\partial {M^2} \ne \emptyset$ and let $h:{M^2} \to {W^4}$ be a topological embedding of ${M^2}$ into a $4$-manifold. The main theorem of this paper asserts that if ${W^4}$ is a piecewise linear $4$-manifold, then $h$ can be arbitrarily closely approximated by locally flat PL embeddings. It is also shown that if the $4$-dimensional annulus conjecture is correct and if $W$ is a topological $4$-manifold, then $h$ can be arbitrarily closely approximated by locally flat embeddings. These results generalize the author’s previous theorems about approximating disks in $4$-space.References
- R. H. Bing, Vertical general position, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 16–41. MR 0394685
- Morton Brown and Herman Gluck, Stable structures on manifolds. I. Homeomorphisms of $S^{n}$, Ann. of Math. (2) 79 (1964), 1–17. MR 158383, DOI 10.2307/1970481
- J. C. Cantrell and C. H. Edwards Jr., Almost locally polyhedral curves in Euclidean $n$-space, Trans. Amer. Math. Soc. 107 (1963), 451–457. MR 149453, DOI 10.1090/S0002-9947-1963-0149453-9
- R. J. Daverman and W. T. Eaton, An equivalence for the embeddings of cells in a $3$-manifold, Trans. Amer. Math. Soc. 145 (1969), 369–381. MR 250280, DOI 10.1090/S0002-9947-1969-0250280-8
- Shin’ichi Kinoshita, On diffeomorphic approximations of polyhedral surfaces in a $4$-space, Osaka Math. J. 12 (1960), 191–194. MR 130687
- Yukio Matsumoto, Wild embeddings of piecewise linear manifolds in codimension two, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977) Academic Press, New York-London, 1979, pp. 393–428. MR 537743
- Yukio Matsumoto and Gerard A. Venema, Failure of the Dehn lemma on contractible $4$-manifolds, Invent. Math. 51 (1979), no. 3, 205–218. MR 530628, DOI 10.1007/BF01389914
- Richard T. Miller, Approximating codimension $3$ embeddings, Ann. of Math. (2) 95 (1972), 406–416. MR 307246, DOI 10.2307/1970867
- R. B. Sher, Tame polyhedra in wild cells and spheres, Proc. Amer. Math. Soc. 30 (1971), 169–174. MR 281178, DOI 10.1090/S0002-9939-1971-0281178-1
- Gerard A. Venema, A topological disk in a $4$-manifold can be approximated by piecewise linear disks, Bull. Amer. Math. Soc. 83 (1977), no. 3, 386–387. MR 431190, DOI 10.1090/S0002-9904-1977-14283-3
- Gerard A. Venema, Approximating disks in $4$-space, Michigan Math. J. 25 (1978), no. 1, 19–27. MR 497879
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 265 (1981), 35-45
- MSC: Primary 57Q35; Secondary 57N45
- DOI: https://doi.org/10.1090/S0002-9947-1981-0607105-3
- MathSciNet review: 607105