Iteration and the solution of functional equations for functions analytic in the unit disk
HTML articles powered by AMS MathViewer
- by Carl C. Cowen
- Trans. Amer. Math. Soc. 265 (1981), 69-95
- DOI: https://doi.org/10.1090/S0002-9947-1981-0607108-9
- PDF | Request permission
Abstract:
This paper considers the classical functional equations of Schroeder $f \circ \varphi = \lambda f$, and Abel $f \circ \varphi = f + 1$, and related problems of fractional iteration where $\varphi$ is an analytic mapping of the open unit disk into itself. The main theorem states that under very general conditions there is a linear fractional transformation $\Phi$ and a function $\sigma$ analytic in the disk such that $\Phi \circ \sigma = \sigma \circ \varphi$ and that, with suitable normalization, $\Phi$ and $\sigma$ are unique. In particular, the hypotheses are satisfied if $\varphi$ is a probability generating function that does not have a double zero at $0$. This intertwining relates solutions of functional equations for $\varphi$ to solutions of the corresponding equations for $\Phi$. For example, it follows that if $\varphi$ has no fixed points in the open disk, then the solution space of $f \circ \varphi = \lambda f$ is infinite dimensional for every nonzero $\lambda$. Although the discrete semigroup of iterates of $\varphi$ usually cannot be embedded in a continuous semigroup of analytic functions mapping the disk into itself, we find that for each $z$ in the disk, all sufficiently large fractional iterates of $\varphi$ can be defined at $z$. This enables us to find a function meromorphic in the disk that deserves to be called the infinitesimal generator of the semigroup of iterates of $\varphi$. If the iterates of $\varphi$ can be embedded in a continuous semigroup, we show that the semigroup must come from the corresponding semigroup for $\Phi$, and thus be real analytic in $t$. The proof of the main theorem is not based on the well known limit technique introduced by Koenigs (1884) but rather on the construction of a Riemann surface on which an extension of $\varphi$ is a bijection. Much work is devoted to relating characteristics of $\varphi$ to the particular linear fractional transformation constructed in the theorem.References
- Krishna B. Athreya and Peter E. Ney, Branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 196, Springer-Verlag, New York-Heidelberg, 1972. MR 0373040
- I. N. Baker, Fractional iteration near a fixpoint of multiplier $1$, J. Austral. Math. Soc. 4 (1964), 143–148. MR 0165080
- Earl Berkson and Horacio Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), no. 1, 101–115. MR 480965 G. T. Cargo, Fixed points and ideal fixed points of holomorphic functions, Notices Amer. Math. Soc. 25 (1978), A636. A. Denjoy, Sur l’itération des fonctions analytiques, C. R. Acad. Sci. Paris 182 (1926), 255-257.
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606 P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94, 208-314.
- Theodore E. Harris, The theory of branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 119, Springer-Verlag, Berlin; Prentice Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0163361
- Herbert Kamowitz, The spectra of composition operators on $H^{p}.$, J. Functional Analysis 18 (1975), 132–150. MR 0407645, DOI 10.1016/0022-1236(75)90021-x S. Karlin and J. McGregor, Spectral theory of branching processes, I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 6-33, 34-54.
- Samuel Karlin and James McGregor, On the spectral representation of branching processes with mean one, J. Math. Anal. Appl. 21 (1968), 485–495. MR 224171, DOI 10.1016/0022-247X(68)90257-6
- Samuel Karlin and James McGregor, Embeddability of discrete time simple branching processes into continuous time branching processes, Trans. Amer. Math. Soc. 132 (1968), 115–136. MR 222966, DOI 10.1090/S0002-9947-1968-0222966-1
- Samuel Karlin and James McGregor, Embedding iterates of analytic functions with two fixed points into continuous groups, Trans. Amer. Math. Soc. 132 (1968), 137–145. MR 224790, DOI 10.1090/S0002-9947-1968-0224790-2
- G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 1 (1884), 3–41 (French). MR 1508749 M. Kuczma, On the Schroeder equation, Roxprawy Mat. 34 (1963).
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280 K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap. (1) 2 (1934-1935), 129-155. R. C. Penney, conversation with the author, 1979.
- Christian Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159–173 (German). MR 180669, DOI 10.1515/crll.1965.218.159 —, On the iteration of analytic functions in a half plane. I, J. London Mat. Soc. (2) 19 (1979), 439-447. E. Schroeder, Über itierte Funktionen, Math. Ann. 3 (1871), 296-322.
- G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203–258. MR 107016, DOI 10.1007/BF02559539
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- Stefan E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310–340. MR 1501813, DOI 10.1090/S0002-9947-1935-1501813-X J. Wolff, Sur l’itération des fonctions, C. R. Acad. Sci. Paris 182 (1926), 42-43, 200-201. —, L’intégrale d’une fonction holomorphe et a partie reelle positive dans un demi plan est univalente, C. R. Acad. Sci. Paris 198 (1934), 1209-1210.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 265 (1981), 69-95
- MSC: Primary 30D05; Secondary 39B05, 60J99
- DOI: https://doi.org/10.1090/S0002-9947-1981-0607108-9
- MathSciNet review: 607108