On spaces of maps of $n$-manifolds into the $n$-sphere
HTML articles powered by AMS MathViewer
- by Vagn Lundsgaard Hansen
- Trans. Amer. Math. Soc. 265 (1981), 273-281
- DOI: https://doi.org/10.1090/S0002-9947-1981-0607120-X
- PDF | Request permission
Abstract:
The space of (continuous) maps of a closed, oriented manifold ${C^n}$ into the $n$-sphere ${S^n}$ has a countable number of (path-) components. In this paper we make a general study of the homotopy classification problem for such a set of components. For ${C^n} = {S^n}$, the problem was solved in [4], and for an arbitrary closed, oriented surface ${C^2}$, it was solved in [5]. We get a complete solution for manifolds ${C^n}$ of even dimension $n \geqslant 4$ with vanishing first Betti number. For odd dimensional manifolds ${C^n}$ we show that there are at most two different homotopy types among the components. Finally, for a class of manifolds introduced by Puppe [8] under the name spherelike manifolds, we get a complete analogue to the main theorem in [4] concerning the class of spheres.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. MR 141119, DOI 10.2307/1970147
- Albrecht Dold, Partitions of unity in the theory of fibrations, Ann. of Math. (2) 78 (1963), 223–255. MR 155330, DOI 10.2307/1970341
- Herbert Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc. 82 (1956), 340–361. MR 79265, DOI 10.1090/S0002-9947-1956-0079265-2
- Vagn Lundsgaard Hansen, The homotopy problem for the components in the space of maps on the $n$-sphere, Quart. J. Math. Oxford Ser. (2) 25 (1974), 313–321. MR 362396, DOI 10.1093/qmath/25.1.313
- Vagn Lundsgaard Hansen, On the space of maps of a closed surface into the $2$-sphere, Math. Scand. 35 (1974), 149–158. MR 385919, DOI 10.7146/math.scand.a-11542 S. T. Hu, Concerning the homotopy groups of the components of the mapping space ${Y^{{S^p}}}$, Indag. Math. 8 (1946), 623-629.
- S. S. Koh, Note on the homotopy properties of the components of the mapping space $X^{S^{p}}$, Proc. Amer. Math. Soc. 11 (1960), 896–904. MR 119201, DOI 10.1090/S0002-9939-1960-0119201-X
- Dieter Puppe, Homotopiemengen und ihre induzierten Abbildungen. II. Sphärenähnliche Mannigfaltigkeiten, Math. Z. 69 (1958), 395–417 (German). MR 100266, DOI 10.1007/BF01187417 H. Seifert und W. Threlfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934.
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI 10.2307/1969485
- Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074
- R. Thom, L’homologie des espaces fonctionnels, Colloque de topologie algébrique, Louvain, 1956, Georges Thone, Liège; Masson & Cie, Paris, 1957, pp. 29–39 (French). MR 0089408
- George W. Whitehead, On products in homotopy groups, Ann. of Math. (2) 47 (1946), 460–475. MR 0016672, DOI 10.2307/1969085
- George W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. (2) 51 (1950), 192–237. MR 41435, DOI 10.2307/1969506
- J. H. C. Whitehead, On certain theorems of G. W. Whitehead, Ann. of Math. (2) 58 (1953), 418–428. MR 60230, DOI 10.2307/1969745
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 265 (1981), 273-281
- MSC: Primary 55P99; Secondary 58D15
- DOI: https://doi.org/10.1090/S0002-9947-1981-0607120-X
- MathSciNet review: 607120