A class of extremal functions for the Fourier transform
HTML articles powered by AMS MathViewer
- by S. W. Graham and Jeffrey D. Vaaler
- Trans. Amer. Math. Soc. 265 (1981), 283-302
- DOI: https://doi.org/10.1090/S0002-9947-1981-0607121-1
- PDF | Request permission
Abstract:
We determine a class of real valued, integrable functions $f(x)$ and corresponding functions ${M_f}(x)$ such that $f(x) \leqslant {M_f}(x)$ for all $x$, the Fourier transform ${\hat M_f}(t)$ is zero when $\left | t \right | \geqslant 1$, and the value of ${\hat M_f}(0)$ is minimized. Several applications of these functions to number theory and analysis are given.References
- K. Chandresekharan, Introduction to analytic number theory, Springer, Berlin, 1968.
- Harold G. Diamond, Changes of sign of $\pi (x)-\textrm {li}$ $x$, Enseign. Math. (2) 21 (1975), no. 1, 1–14. MR 376566
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847
- Hugh L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), no. 4, 547–567. MR 466048, DOI 10.1090/S0002-9904-1978-14497-8
- H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, J. London Math. Soc. (2) 8 (1974), 73–82. MR 337775, DOI 10.1112/jlms/s2-8.1.73
- Y\B{o}ichi Motohashi, On the theorem of the least prime, Sūrikaisekikenkyūsho K\B{o}kyūroku 294 (1977), 15–61 (Japanese). MR 472738
- Atle Selberg, Remarks on sieves, Proceedings of the 1972 Number Theory Conference (Univ. Colorado, Boulder, Colo.), Univ. Colorado, Boulder, Colo., 1972, pp. 205–216. MR 0389802
- Atle Selberg, Remarks on multiplicative functions, Number theory day (Proc. Conf., Rockefeller Univ., New York, 1976) Lecture Notes in Math., Vol. 626, Springer, Berlin, 1977, pp. 232–241. MR 0485750
- Norbert Wiener, The Fourier integral and certain of its applications, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1933 edition; With a foreword by Jean-Pierre Kahane. MR 983891, DOI 10.1017/CBO9780511662492
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 265 (1981), 283-302
- MSC: Primary 42A38; Secondary 10H30
- DOI: https://doi.org/10.1090/S0002-9947-1981-0607121-1
- MathSciNet review: 607121