Weighted estimates for fractional powers of partial differential operators
HTML articles powered by AMS MathViewer
- by Raymond Johnson
- Trans. Amer. Math. Soc. 265 (1981), 511-525
- DOI: https://doi.org/10.1090/S0002-9947-1981-0610962-8
- PDF | Request permission
Abstract:
It is shown that fractional powers defined by the wave polynomial $P(\xi ) = \xi _{^1}^2 + \cdots + \xi _p^2 - \xi _{p + 1}^2 - \cdots - \xi _n^2$, defined in terms of Fourier transforms by $\widehat {{T^\lambda }f} = {\left | {P(\xi )} \right |^\lambda }\hat f$, are in the Bernstein subalgebra of functions with integrable Fourier transforms for $\lambda > (n - 1)/2$, provided $f \in C_c^m$ with $m$ large enough. The proof uses embedding theorems for Besov spaces and Stein’s theorem on interpolation of analytic families of operators.References
- T. M. Flett, On a theorem of Pitt, J. London Math. Soc. (2) 7 (1973), 376–384. MR 370159, DOI 10.1112/jlms/s2-7.2.376
- C. S. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968/69), 283–323. MR 0438109, DOI 10.1512/iumj.1969.18.18024
- Frederick W. Keene, Ronald L. Lipsman, and Joseph A. Wolf, The Plancherel formula for parabolic subgroups, Israel J. Math. 28 (1977), no. 1-2, 68–90. MR 507242, DOI 10.1007/BF02759782
- Ronald L. Lipsman and Joseph A. Wolf, The Plancherel formula for parabolic subgroups of the classical groups, J. Analyse Math. 34 (1978), 120–161 (1979). MR 531273, DOI 10.1007/BF02790010
- Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, DOI 10.1090/S0002-9947-1974-0340523-6
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 265 (1981), 511-525
- MSC: Primary 46E35; Secondary 42B99, 46F12
- DOI: https://doi.org/10.1090/S0002-9947-1981-0610962-8
- MathSciNet review: 610962