Recognizing the real line
HTML articles powered by AMS MathViewer
- by Yuri Gurevich and W. Charles Holland
- Trans. Amer. Math. Soc. 265 (1981), 527-534
- DOI: https://doi.org/10.1090/S0002-9947-1981-0610963-X
- PDF | Request permission
Abstract:
A certain elementary statement about the group of automorphisms of the real line $\mathbf {R}$ is sufficient to characterize $\mathbf {R}$ among homogeneous chains. A similar result holds for the chain of rational numbers.References
- A. M. W. Glass, Ordered permutation groups, Bowling Green State University, Bowling Green, Ohio, 1976. MR 0422105
- Charles Holland, The lattice-ordered groups of automorphisms of an ordered set, Michigan Math. J. 10 (1963), 399–408. MR 158009
- Charles Holland, Transitive lattice-ordered permutation groups, Math. Z. 87 (1965), 420–433. MR 178052, DOI 10.1007/BF01111722
- W. Charles Holland, Trying to recognize the real line, Ordered groups (Proc. Conf., Boise State Univ., Boise, Idaho, 1978), Lecture Notes in Pure and Appl. Math., vol. 62, Dekker, New York, 1980, pp. 131–134. MR 601621 M. Jambu-Giraudet, Théorie des modèles des groups d’automorphismes d’ensembles totalment ordonné, Thèse ${3^{me}}$ cycle, Univ. Paris VII, 1979.
- Stephen H. McCleary, Groups of homeomorphisms with manageable automorphism groups, Comm. Algebra 6 (1978), no. 5, 497–528. MR 484757, DOI 10.1080/00927877808822256
- Ralph McKenzie, On elementary types of symmetric groups, Algebra Universalis 1 (1971), no. 1, 13–20. MR 286643, DOI 10.1007/BF02944950
- A. G. Pinus, Elementary definability of symmetry groups, Algebra Universalis 3 (1973), 59–66. MR 337594, DOI 10.1007/BF02945104
- Saharon Shelah, First order theory of permutation groups, Israel J. Math. 14 (1973), 149–162; errata, ibid. 15 (1973), 437–441. MR 416909, DOI 10.1007/BF02762670
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 265 (1981), 527-534
- MSC: Primary 03C60; Secondary 03C65, 06F15
- DOI: https://doi.org/10.1090/S0002-9947-1981-0610963-X
- MathSciNet review: 610963