## Uniqueness of invariant means for measure-preserving transformations

HTML articles powered by AMS MathViewer

- by Joseph Rosenblatt
- Trans. Amer. Math. Soc.
**265**(1981), 623-636 - DOI: https://doi.org/10.1090/S0002-9947-1981-0610970-7
- PDF | Request permission

## Abstract:

For some compact abelian groups $X$ (e.g. $T^n$, $n \geqslant 2$, and $\prod \nolimits _{n = 1}^\infty {{Z_2}}$), the group $G$ of topological automorphisms of $X$ has the Haar integral as the unique $G$-invariant mean on ${L_\infty }(X,{\lambda _X})$. This gives a new characterization of Lebesgue measure on the bounded Lebesgue measurable subsets $\beta$ of ${R^n}$, $n \geqslant 3$; it is the unique normalized positive finitely-additive measure on $\beta$ which is invariant under isometries and the transformation of ${R^n}:({x_1}, \ldots ,{x_n}) \mapsto ({x_1} + {x_2},{x_2}, \ldots ,{x_n})$. Other examples of, as well as necessary and sufficient conditions for, the uniqueness of a mean on ${L_\infty }(X,\beta ,p)$, which is invariant by some group of measure-preserving transformations of the probability space $(X,\beta ,p)$, are described.## References

- S. Banach,
- Andrés del Junco and Joseph Rosenblatt,
*Counterexamples in ergodic theory and number theory*, Math. Ann.**245**(1979), no. 3, 185–197. MR**553340**, DOI 10.1007/BF01673506 - Edmond Granirer,
*Criteria for compactness and for discreteness of locally compact amenable groups*, Proc. Amer. Math. Soc.**40**(1973), 615–624. MR**340962**, DOI 10.1090/S0002-9939-1973-0340962-8 - Frederick P. Greenleaf,
*Invariant means on topological groups and their applications*, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR**0251549** - V. Losert and H. Rindler,
*Almost invariant sets*, Bull. London Math. Soc.**13**(1981), no. 2, 145–148. MR**608100**, DOI 10.1112/blms/13.2.145
E. Marczewski (Szprilrajn), - Jan Mycielski,
*Equations unsolvable in $\textrm {GL}_{2}(C)$ and related problems*, Amer. Math. Monthly**85**(1978), no. 4, 263–265. MR**470100**, DOI 10.2307/2321170 - Jan Mycielski,
*Finitely additive invariant measures. I*, Colloq. Math.**42**(1979), 309–318. MR**567569**, DOI 10.4064/cm-42-1-309-318 - Jan Mycielski,
*Finitely additive invariant measures. I*, Colloq. Math.**42**(1979), 309–318. MR**567569**, DOI 10.4064/cm-42-1-309-318 - I. Namioka,
*Følner’s conditions for amenable semi-groups*, Math. Scand.**15**(1964), 18–28. MR**180832**, DOI 10.7146/math.scand.a-10723 - Jan Mycielski,
*Finitely additive invariant measures. I*, Colloq. Math.**42**(1979), 309–318. MR**567569**, DOI 10.4064/cm-42-1-309-318 - Joseph Max Rosenblatt,
*Invariant means for the bounded measurable functions on a non-discrete locally compact group*, Math. Ann.**220**(1976), no. 3, 219–228. MR**397305**, DOI 10.1007/BF01431093 - Walter Rudin,
*Invariant means on $L^{\infty }$*, Studia Math.**44**(1972), 219–227. MR**304975**, DOI 10.4064/sm-44-3-219-227
K. Schmidt, - Dennis Sullivan,
*For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesgue measurable subsets*, Bull. Amer. Math. Soc. (N.S.)**4**(1981), no. 1, 121–123. MR**590825**, DOI 10.1090/S0273-0979-1981-14880-1 - Stanton M. Trott,
*A pair of generators for the unimodular group*, Canad. Math. Bull.**5**(1962), 245–252. MR**141716**, DOI 10.4153/CMB-1962-024-x

*Sur le problème de la mesure*, Oeuvres, Vol. I, PWN, Warsaw, 1967, pp. 318-322.

*Problem*$169$, The Scottish Book, 1937-1938.

*Asymptotically invariant sequences and an action of*$SL(2,Z)$

*on the*$2$

*-sphere*(preprint). —,

*Amenability, Kazhdan’s property*$T$,

*strong ergodicity, and invariant means for ergodic actions*(preprint).

## Bibliographic Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**265**(1981), 623-636 - MSC: Primary 28D15; Secondary 43A07, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1981-0610970-7
- MathSciNet review: 610970