Uniqueness of invariant means for measure-preserving transformations
HTML articles powered by AMS MathViewer
- by Joseph Rosenblatt
- Trans. Amer. Math. Soc. 265 (1981), 623-636
- DOI: https://doi.org/10.1090/S0002-9947-1981-0610970-7
- PDF | Request permission
Abstract:
For some compact abelian groups $X$ (e.g. $T^n$, $n \geqslant 2$, and $\prod \nolimits _{n = 1}^\infty {{Z_2}}$), the group $G$ of topological automorphisms of $X$ has the Haar integral as the unique $G$-invariant mean on ${L_\infty }(X,{\lambda _X})$. This gives a new characterization of Lebesgue measure on the bounded Lebesgue measurable subsets $\beta$ of ${R^n}$, $n \geqslant 3$; it is the unique normalized positive finitely-additive measure on $\beta$ which is invariant under isometries and the transformation of ${R^n}:({x_1}, \ldots ,{x_n}) \mapsto ({x_1} + {x_2},{x_2}, \ldots ,{x_n})$. Other examples of, as well as necessary and sufficient conditions for, the uniqueness of a mean on ${L_\infty }(X,\beta ,p)$, which is invariant by some group of measure-preserving transformations of the probability space $(X,\beta ,p)$, are described.References
- S. Banach, Sur le problème de la mesure, Oeuvres, Vol. I, PWN, Warsaw, 1967, pp. 318-322.
- Andrés del Junco and Joseph Rosenblatt, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), no. 3, 185–197. MR 553340, DOI 10.1007/BF01673506
- Edmond Granirer, Criteria for compactness and for discreteness of locally compact amenable groups, Proc. Amer. Math. Soc. 40 (1973), 615–624. MR 340962, DOI 10.1090/S0002-9939-1973-0340962-8
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- V. Losert and H. Rindler, Almost invariant sets, Bull. London Math. Soc. 13 (1981), no. 2, 145–148. MR 608100, DOI 10.1112/blms/13.2.145 E. Marczewski (Szprilrajn), Problem $169$, The Scottish Book, 1937-1938.
- Jan Mycielski, Equations unsolvable in $\textrm {GL}_{2}(C)$ and related problems, Amer. Math. Monthly 85 (1978), no. 4, 263–265. MR 470100, DOI 10.2307/2321170
- Jan Mycielski, Finitely additive invariant measures. I, Colloq. Math. 42 (1979), 309–318. MR 567569, DOI 10.4064/cm-42-1-309-318
- Jan Mycielski, Finitely additive invariant measures. I, Colloq. Math. 42 (1979), 309–318. MR 567569, DOI 10.4064/cm-42-1-309-318
- I. Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964), 18–28. MR 180832, DOI 10.7146/math.scand.a-10723
- Jan Mycielski, Finitely additive invariant measures. I, Colloq. Math. 42 (1979), 309–318. MR 567569, DOI 10.4064/cm-42-1-309-318
- Joseph Max Rosenblatt, Invariant means for the bounded measurable functions on a non-discrete locally compact group, Math. Ann. 220 (1976), no. 3, 219–228. MR 397305, DOI 10.1007/BF01431093
- Walter Rudin, Invariant means on $L^{\infty }$, Studia Math. 44 (1972), 219–227. MR 304975, DOI 10.4064/sm-44-3-219-227 K. Schmidt, Asymptotically invariant sequences and an action of $SL(2,Z)$ on the $2$-sphere (preprint). —, Amenability, Kazhdan’s property $T$, strong ergodicity, and invariant means for ergodic actions (preprint).
- Dennis Sullivan, For $n>3$ there is only one finitely additive rotationally invariant measure on the $n$-sphere defined on all Lebesgue measurable subsets, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 121–123. MR 590825, DOI 10.1090/S0273-0979-1981-14880-1
- Stanton M. Trott, A pair of generators for the unimodular group, Canad. Math. Bull. 5 (1962), 245–252. MR 141716, DOI 10.4153/CMB-1962-024-x
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 265 (1981), 623-636
- MSC: Primary 28D15; Secondary 43A07, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1981-0610970-7
- MathSciNet review: 610970