Nonseparable approximate equivalence
HTML articles powered by AMS MathViewer
- by Donald W. Hadwin
- Trans. Amer. Math. Soc. 266 (1981), 203-231
- DOI: https://doi.org/10.1090/S0002-9947-1981-0613792-6
- PDF | Request permission
Abstract:
This paper extends Voiculescu’s theorem on approximate equivalence to the case of nonseparable representations of nonseparable ${C^ \ast }$-algebras. The main result states that two representations $f$ and $g$ are approximately equivalent if and only if ${\text {rank}}f(x) = {\text {rank}}g(x)$ for every $x$. For representations of separable ${C^ \ast }$-algebras a multiplicity theory is developed that characterizes approximate equivalence. Thus for a separable ${C^ \ast }$-algebra, the space of representations modulo approximate equivalence can be identified with a class of cardinal-valued functions on the primitive ideal space of the algebra. Nonseparable extensions of Voiculescu’s reflexivity theorem for subalgebras of the Calkin algebra are also obtained.References
- Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, Strongly reductive operators are normal, Acta Sci. Math. (Szeged) 38 (1976), no. 3-4, 261–263. MR 433241
- Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, On strongly reductive algebras, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 6, 633–641. MR 417804
- Constantin Apostol and Che Kao Fong, Invariant subspaces for algebras generated by strongly reductive operators, Duke Math. J. 42 (1975), no. 3, 495–498. MR 372647
- William Arveson, Notes on extensions of $C^{^*}$-algebras, Duke Math. J. 44 (1977), no. 2, 329–355. MR 438137 —, An invitation to ${C^ \ast }$-algebras, Graduate Texts in Math., vol. 39, Springer-Verlag, New York, 1976.
- I. David Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365–371. MR 283610, DOI 10.1090/S0002-9947-1971-0283610-0
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- John W. Bunce and James A. Deddens, Subspace approximants and GCR operators, Indiana Univ. Math. J. 24 (1974/75), 341–349. MR 350473, DOI 10.1512/iumj.1974.24.24030
- Stephen L. Campbell and Ralph Gellar, On asymptotic properties of several classes of operators, Proc. Amer. Math. Soc. 66 (1977), no. 1, 79–84. MR 461187, DOI 10.1090/S0002-9939-1977-0461187-5
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173 —, Les algèbres d’opérateurs dans l’espace Hilbertien, Gauthier-Villars, Paris, 1957.
- G. Edgar, J. Ernest, and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971/72), 61–80. MR 417836, DOI 10.1512/iumj.1971.21.21005
- Ralph Gellar and Lavon Page, Limits of unitarily equivalent normal operators, Duke Math. J. 41 (1974), 319–322. MR 338817
- Donald W. Hadwin, An operator-valued spectrum, Indiana Univ. Math. J. 26 (1977), no. 2, 329–340. MR 428089, DOI 10.1512/iumj.1977.26.26025
- Donald W. Hadwin, Continuous functions of operators; a functional calculus, Indiana Univ. Math. J. 27 (1978), no. 1, 113–125. MR 467367, DOI 10.1512/iumj.1978.27.27010 —, Closures of unitary equivalence classes and completely positive maps, Notices Amer. Math. Soc. 23 (1976), A-587.
- Donald W. Hadwin, Approximating direct integrals of operators by direct sums, Michigan Math. J. 25 (1978), no. 1, 123–127. MR 500245
- Donald W. Hadwin, An asymptotic double commutant theorem for $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 244 (1978), 273–297. MR 506620, DOI 10.1090/S0002-9947-1978-0506620-0 —, Non-separable approximate equivalence, Notices Amer. Math. Soc. 25 (1978), A-8.
- P. R. Halmos, Irreducible operators, Michigan Math. J. 15 (1968), 215–223. MR 231233
- P. R. Halmos, Some unsolved problems of unknown depth about operators on Hilbert space, Proc. Roy. Soc. Edinburgh Sect. A 76 (1976/77), no. 1, 67–76. MR 451002, DOI 10.1017/S0308210500019491
- K. J. Harrison, Strongly reductive operators, Acta Sci. Math. (Szeged) 37 (1975), no. 3-4, 205–212. MR 388129
- Carl Pearcy and Norberto Salinas, Finite dimensional representations of $C^{\ast }$-algebras and the reducing matricial spectra of an operator, Rev. Roumaine Math. Pures Appl. 20 (1975), no. 5, 567–598. MR 390786
- W. Sikonia, The von Neumann converse of Weyl’s theorem, Indiana Univ. Math. J. 21 (1971/72), 121–124. MR 285928, DOI 10.1512/iumj.1971.21.21011
- F. Javier Thayer F., Quasi-diagonal $C^*$-algebras, J. Functional Analysis 25 (1977), no. 1, 50–57. MR 0448098, DOI 10.1016/0022-1236(77)90031-3
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 266 (1981), 203-231
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9947-1981-0613792-6
- MathSciNet review: 613792